Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Becherescu, Virginia

  • Google
  • 1
  • 9
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Secondary Crystalline Phases Influence on Optical Properties in Off-Stoichiometric Cu2S–ZnS–SnS2 Thin Films17citations

Places of action

Chart of shared publication
Matei, Elena
1 / 5 shared
Şimăndan, Iosif - Daniel
1 / 6 shared
Sava, Florinel
1 / 7 shared
Mihai, Claudia
1 / 7 shared
Velea, Alin
1 / 7 shared
Diagne, Ousmane
1 / 1 shared
Galca, Aurelian Catalin
1 / 11 shared
Becherescu, Nicu
1 / 5 shared
Burdusel, Mihail
1 / 4 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Matei, Elena
  • Şimăndan, Iosif - Daniel
  • Sava, Florinel
  • Mihai, Claudia
  • Velea, Alin
  • Diagne, Ousmane
  • Galca, Aurelian Catalin
  • Becherescu, Nicu
  • Burdusel, Mihail
OrganizationsLocationPeople

article

Secondary Crystalline Phases Influence on Optical Properties in Off-Stoichiometric Cu2S–ZnS–SnS2 Thin Films

  • Matei, Elena
  • Şimăndan, Iosif - Daniel
  • Sava, Florinel
  • Mihai, Claudia
  • Velea, Alin
  • Diagne, Ousmane
  • Galca, Aurelian Catalin
  • Becherescu, Nicu
  • Becherescu, Virginia
  • Burdusel, Mihail
Abstract

<jats:p>Cu2ZnSnS4 (CZTS) is an economically and environmentally friendly alternative to other toxic and expensive materials used for photovoltaics, however, the variation in the composition during synthesis is often followed by the occurrence of the secondary binary and ternary crystalline phases. These phases produce changes in the optical absorption edge important in cell efficiency. We explore here the secondary phases that emerge in a combinatorial Cu2S–ZnS–SnS2 thin films library. Thin films with a composition gradient were prepared by simultaneous magnetron sputtering from three binary chalcogenide targets (Cu2S, SnS2 and ZnS). Then, the samples were crystallized by sulfurization annealing at 450 °C under argon flow. Their composition was measured by energy dispersive X-ray spectroscopy (EDX), whereas the structural and optical properties were investigated by grazing incidence X-ray diffraction (GIXRD), Raman spectroscopy and optical transmission measurements. As already known, we found that annealing in a sulfur environment is beneficial, increasing the crystallinity of the samples. Raman spectroscopy revealed the presence of CZTS in all the samples from the library. Secondary crystalline phases such as SnS2, ZnS and Cu–S are also formed in the samples depending on their proximity to the binary chalcogenide targets. The formation of ZnS or Cu–S strongly correlates with the Zn/Sn and Cu/Zn ratio of the total sample composition. The presence of these phases produces a variation in the bandgap between 1.41 eV and 1.68 eV. This study reveals that as we go further away from CZTS in the composition space, in the quasi-ternary Cu2S–ZnS–SnS2 diagram, secondary crystalline phases arise and increase in number, whereas the bandgap takes values outside the optimum range for photovoltaic applications.</jats:p>

Topics
  • impedance spectroscopy
  • x-ray diffraction
  • thin film
  • crystalline phase
  • annealing
  • Energy-dispersive X-ray spectroscopy
  • Raman spectroscopy
  • crystallinity