People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Müller, Michael Thomas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023Additive Free Crosslinking of Poly-3-hydroxybutyrate via Electron Beam Irradiation at Elevated Temperaturescitations
- 2023Effect of electron beam irradiation on thermal stability and crystallization behavior of flexible copolyester/multiwalled carbon nanotubes nanocompositescitations
- 2023Influence of temperature and dose rate of e‐beam modification on electron‐induced changes in polyacrylonitrile fiberscitations
- 2022Thermoelectric Performance of Polypropylene/Carbon Nanotube/Ionic Liquid Composites and Its Dependence on Electron Beam Irradiationcitations
- 2021A new strategy to improve viscoelasticity, crystallization and mechanical properties of polylactidecitations
- 2020Laccase-Enzyme Treated Flax Fibre for Use in Natural Fibre Epoxy Compositescitations
- 2019Influence of a supplemental filler in twin-screw extruded PP/CNT composites using masterbatch dilutioncitations
- 2019In-Line Nanostructuring of Glass Fibres Using Different Carbon Allotropes for Structural Health Monitoring Applicationcitations
- 2018Online Structural-Health Monitoring of Glass Fiber-Reinforced Thermoplastics Using Different Carbon Allotropes in the Interphase
- 2018Enhanced Interfacial Shear Strength and Critical Energy Release Rate in Single Glass Fiber-Crosslinked Polypropylene Model Microcompositescitations
- 2017Effect of Graphite Nanoplate Morphology on the Dispersion and Physical Properties of Polycarbonate Based Compositescitations
- 2016Electrical Conductive Surface Functionalization of Polycarbonate Parts with CNT Composite Films during Injection Moldingcitations
- 2013Influence of talc with different particle sizes in melt-mixed LLDPE/MWCNT compositescitations
- 2012A successful approach to disperse MWCNTs in polyethylene by melt mixing using polyethylene glycol as additivecitations
- 2011Influence of feeding conditions in twin-screw extrusion of PP/MWCNT composites on electrical and mechanical propertiescitations
Places of action
Organizations | Location | People |
---|
article
Laccase-Enzyme Treated Flax Fibre for Use in Natural Fibre Epoxy Composites
Abstract
Natural fibres have a high potential as reinforcement of polymer matrices, as they combine a high specific strength and modulus with sustainable production and reasonable prices. Modifying the fibre surface is a common method to increase the adhesion and thereby enhance the mechanical properties of composites. In this study, a novel sustainable surface treatment is presented: the fungal enzyme laccase was utilised with the aim of covalently binding the coupling agent dopamine to flax fibre surfaces. The goal is to improve the interfacial strength towards an epoxy matrix. SEM and AFM micrographs showed that the modification changes the surface morphology, indicating a deposition of dopamine on the surface. Fibre tensile tests, which were performed to check whether the fibre structure was damaged during the treatment, showed that no decrease in tensile strength or modulus occurred. Single fibre pullout tests showed a 30% increase in interfacial shear strength (IFSS) due to the laccase-mediated bonding of the coupling agent dopamine. These results demonstrate that a laccase + dopamine treatment modifies flax fibres sustainably and increases the interfacial strength towards epoxy. ; publishedVersion