People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lefever, Gerlinde
Vrije Universiteit Brussel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2023Monitoring the self-healing evolution of cementitious mixtures with superabsorbent polymers through air-coupled ultrasoundcitations
- 2023Crack closure assessment in cementitious mixtures based on ultrasound measurementscitations
- 2023Ultrasonic evaluation of self-healing cementitious materials with superabsorbent polymers: Mortar vs. concretecitations
- 2023Ultrasonic evaluation of self-healing cementitious materials with superabsorbent polymers: Mortar vs. concretecitations
- 2022Nanomaterials in self-healing cementitious compositescitations
- 2022Evaluation of self-healing in cementitious materials with superabsorbent polymers through ultrasonic mappingcitations
- 2021Sensor Size Effect on Rayleigh Wave Velocity on Cementitious Surfacescitations
- 2020The influence of superabsorbent polymers and nanosilica on the hydration process and microstructure of cementitious mixturescitations
- 2020Superabsorbent polymers and nanosilica for mitigation of autogenous shrinkage and promotion of self-healing of cementitious materials
- 2020Chasing the Bubble: Ultrasonic Dispersion and Attenuation from Cement with Superabsorbent Polymers to Shampoocitations
- 2020Evaluation of the Self-Healing Ability of Mortar Mixtures Containing Superabsorbent Polymers and Nanosilicacitations
- 2020The contribution of elastic wave NDT to the characterization of modern cementitious mediacitations
- 2018Assessment of the effect of nanosilica on the mechanical performance and durability of cementitious materialscitations
Places of action
Organizations | Location | People |
---|
article
Chasing the Bubble: Ultrasonic Dispersion and Attenuation from Cement with Superabsorbent Polymers to Shampoo
Abstract
<jats:p>This study aims to experimentally investigate the ultrasonic behavior of fresh cement focusing on the contribution of the entrapped air bubbles. Frequency dispersion and attenuation carry delicate information that is not possible to gather by traditional ultrasonic pulse velocity. This is measured by simple indicators that quantify the frequency dependence of propagation velocity of longitudinal waves through fresh cementitious media. It seems that dispersion shows much stronger sensitivity to the microstructural processes, since the presence of superabsorbent polymers in mortar induces a large difference in dispersion parameters when compared to reference cement mortar, while only marginal difference in threshold-based pulse velocity. To reach this aim, references are taken from, and comparisons are made to other liquids in order first in order to validate the reliability of the methodology and to better understand the contribution of the cavities in the obtained dispersion and attenuation curves. Ultrasonic dispersion assessment of cementitious media has the potential to bring a lot of information on the microstructure of materials, as well as the ongoing processes.</jats:p>