People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sheridan, Richard
University of Birmingham
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Strip Casting of Sm2TM17-Type Alloys for Production of the Metastable SmTM7 Phase
- 2024Development of anisotropic Nd-Fe-B powder from isotropic gas atomized powdercitations
- 2023Strip Casting of Sm2TM17-type Alloys for Production of the Metastable SmTM7 Phase
- 2023On the origin of cracking in laser powder bed fusion processed LaCe(Fe,Mn,Si)13, and the impact of post-processingcitations
- 2023The effect of thermal post-processing treatment on laser powder bed fusion processed NiMnSn-based alloy for magnetic refrigerationcitations
- 2022The effect of grain size on the internal oxidation of Sm2Co17-type permanent magnetscitations
- 2021Microstructure-magnetic shielding development in additively manufactured Ni-Fe-Mo soft magnet alloy in the as fabricated and post-processed conditionscitations
- 2020Limitations in grain boundary processing of the recycled HDDR Nd-Fe-B systemcitations
- 2020Magnetic shielding promotion via the control of magnetic anisotropy and thermal Post processing in laser powder bed fusion processed NiFeMo-based soft magnetcitations
- 2020The extraction of NdFeB magnets from automotive scrap rotors using hydrogencitations
- 2019Magnetic properties of REE fluorcarbonate minerals and their implications for minerals processingcitations
- 2019Coercivity increase of the recycled HDDR Nd-Fe-B powders doped with DyF3 and processed via Spark Plasma Sintering & the effect of thermal treatmentscitations
- 2016REE Recovery from End-of-Life NdFeB Permanent Magnet Scrap: A Critical Reviewcitations
- 2016The development of microstructure during hydrogenation–disproportionation–desorption–recombination treatment of sintered neodymium-iron-boron-type magnetscitations
- 2016Novel "Flash Spark Plasma Sintering" method for the rapid fabrication of nanostructured and anisotropic rare-earth lean permanent magnetic materials
- 2014The Effect of Ni Impurities on HDDR Processing of Scrap Sintered NdFeB Magnets
Places of action
Organizations | Location | People |
---|
article
Limitations in grain boundary processing of the recycled HDDR Nd-Fe-B system
Abstract
Fully dense spark plasma sintered recycled and fresh HDDR Nd-Fe-B nanocrystalline 16 bulk magnets are processed by surface grain boundary diffusion (GBD) treatment to further 17 augment the coercivity and investigate the underlying diffusion mechanism. The fully dense SPS 18 processed HDDR based magnets were placed in a crucible with varying the eutectic alloys Pr68Cu32 19 and Dy70Cu30 from 2 – 20 wt.% as direct diffusion source above the ternary transition temperature 20 for GBD processing followed by secondary annealing. The changes in mass gain was analysed and 21 weighted against the magnetic properties. For the recycled magnet, the coercivity (HCi) values 22 obtained after optimal GBDP yielded ~ 60% higher than the starting recycled HDDR powder and 23 17.5% higher than the SPS-ed processed magnets. The fresh MF-15P HDDR Nd-Fe-B based magnets 24 gained 25 – 36% higher coercivities with Pr-Cu GBDP. The FEG-SEM investigation provided insight 25 on the diffusion depth and EDXS analysis indicated the changes in matrix and intergranular phase 26 composition within the diffusion zone. The mechanism of surface to grain boundary diffusion and 27 the limitations to thorough grain boundary diffusion in the HDDR Nd-Fe-B based bulk magnets are 28 detailed in this study.