People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Swieszkowski, Wojciech
Warsaw University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023In vitro and in vivo degradation behavior of Mg-0.45Zn-0.45Ca (ZX00) screws for orthopedic applicationscitations
- 2023How to control the crystallization of metallic glasses during laser powder bed fusion? Towards part-specific 3D printing of in situ compositescitations
- 2023Microstructure and properties of an AZ61 alloy after extrusion with a forward-backward oscillating die without preheating of the initial billetcitations
- 2023In-depth analysis of the influence of bio-silica filler (Didymosphenia geminata frustules) on the properties of Mg matrix compositescitations
- 2023The combined effect of zinc and calcium on the biodegradation of ultrahigh-purity magnesium implantscitations
- 2023Design of polymeric thin films with nanovolcanoes for trapping hydroxyapatite nanoparticles to promote or inhibit cell proliferation
- 2022In situ alloying of NiTi: Influence of laser powder bed fusion (LBPF) scanning strategy on chemical compositioncitations
- 2022Heat Treatment of NiTi Alloys Fabricated Using Laser Powder Bed Fusion (LPBF) from Elementally Blended Powderscitations
- 2022A comparison of the microstructure-dependent corrosion of dual-structured Mg-Li alloys fabricated by powder consolidation methods: Laser powder bed fusion vs pulse plasma sinteringcitations
- 2022The Role of LPSO Structures in Corrosion Resistance of Mg-Y-Zn Alloyscitations
- 2022How to Control the Crystallization of Metallic Glasses During Laser Powder Bed Fusion? Towards Part-Specific 3d Printing of in Situ Composites
- 2021Investigation into morphological and electromechanical surface properties of reduced-graphene-oxide-loaded composite fibers for bone tissue engineering applications: A comprehensive nanoscale study using atomic force microscopy approachcitations
- 2021Biological and Corrosion Evaluation of In Situ Alloyed NiTi Fabricated through Laser Powder Bed Fusion (LPBF)citations
- 20203D-Printed Drug Delivery Systemscitations
- 20203D-Printed Drug Delivery Systems : The Effects of Drug Incorporation Methods on Their Release and Antibacterial Efficiencycitations
Places of action
Organizations | Location | People |
---|
article
3D-Printed Drug Delivery Systems
Abstract
<p>Additive manufacturing technologies have been widely used in the medical field. More specifically, fused filament fabrication (FFF) 3D-printing technology has been thoroughly investigated to produce drug delivery systems. Recently, few researchers have explored the possibility of directly 3D printing such systems without the need for producing a filament which is usually the feedstock material for the printer. This was possible via direct feeding of a mixture consisting of the carrier polymer and the required drug. However, as this direct feeding approach shows limited homogenizing abilities, it is vital to investigate the effect of the pre-mixing step on the quality of the 3D printed products. Our study investigates the two commonly used mixing approaches-solvent casting and powder mixing. For this purpose, polycaprolactone (PCL) was used as the main polymer under investigation and gentamicin sulfate (GS) was selected as a reference. The produced systems' efficacy was investigated for bacterial and biofilm prevention. Our data show that the solvent casting approach offers improved drug distribution within the polymeric matrix, as was observed from micro-computed topography and scanning electron microscopy visualization. Moreover, this approach shows a higher drug release rate and thus improved antibacterial efficacy. However, there were no differences among the tested approaches in terms of thermal and mechanical properties.</p>