People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pixner, Florian
Austrian Institute of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Thermal cycling effects on the local microstructure and mechanical properties in wire-based directed energy deposition of nickel-based superalloycitations
- 2024Physical Simulation of microstructures generated by wire-arc directed energy deposition
- 2024Welding of S1100 Ultra high-Strength Steel Plates with Matching Metal-Cored Filler Wirecitations
- 2023Influence of process and heat input on the microstructure and mechanical properties in wire arc additive manufacturing of hot work tool steelscitations
- 2023Application of electron beam welding technique for joining coarse-grained and ultrafine-grained plates from Al-Mg-Si alloycitations
- 2023Microstructure and texture characterisation of friction stir welded CoCrNi and CoCrFeMnNi multi-principle element alloyscitations
- 2023Microstructure characterisation of multi-principal element alloys welds produced by electron beam weldingcitations
- 2022Combination of Electron Beam Surface Structuring and Plasma Electrolytic Oxidation for Advanced Surface Modification of Ti6Al4V Alloycitations
- 2022Directed energy deposition processes and process design by artificial intelligencecitations
- 2022Tailoring the alloy composition for wire arc additive manufacturing utilizing metal-cored wires in the cold metal transfer processcitations
- 2022Mechanical and microstructural properties of S1100 UHSS welds obtained by EBW and MAG weldingcitations
- 2022Manufacturing of coarse and ultrafine-grained aluminum matrix composites reinforced with Al2O3 nanoparticles via friction stir processingcitations
- 2022Wire-based electron beam additive manufacturing of tungstencitations
- 2021Residual Stresses, Microstructure, and Mechanical Properties of Electron Beam Welded Thick S1100 Steelcitations
- 2020Wire-Based Additive Manufacturing of Ti-6Al-4V Using Electron Beam Techniquecitations
- 2019Influence of the focus wobbling technique on the integrity and the properties of electron beam welded MarBN steelcitations
- 2019Improving the integrity and the microstructural features of electron beam welds of a creep-resistant martensitic steel by local (de-)alloyingcitations
- 2019Microstructure development of molybdenum during rotary friction weldingcitations
- 20194-D Printing of NiTi Shape Memory Alloys
Places of action
Organizations | Location | People |
---|
article
Wire-Based Additive Manufacturing of Ti-6Al-4V Using Electron Beam Technique
Abstract
Electron beam freeform fabrication is a wire feed direct energy deposition additive manufacturing process, where the vacuum condition ensures excellent shielding against the atmosphere and enables processing of highly reactive materials. In this work, this technique is applied for the α + β-titanium alloy Ti-6Al-4V to determine suitable process parameter for robust building. The correlation between dimensions and the dilution of single beads based on selected process parameters, leads to an overlapping distance in the range of 70%-75% of the bead width, resulting in a multi-bead layer with a uniform height and with a linear build-up rate. Moreover, the stacking of layers with different numbers of tracks using an alternating symmetric welding sequence allows the manufacturing of simple structures like walls and blocks. Microscopy investigations reveal that the primary structure consists of epitaxial grown columnar prior β-grains, with some randomly scattered macro and micropores. The developed microstructure consists of a mixture of martensitic and finer α-lamellar structure with a moderate and uniform hardness of 334 HV, an ultimate tensile strength of 953 MPa and rather low fracture elongation of 4.5%. A subsequent stress relief heat treatment leads to a uniform hardness distribution and an extended fracture elongation of 9.5%, with a decrease of the ultimate strength to 881 MPa due to the fine α-lamellar structure produced during the heat treatment. Residual stresses measured by energy dispersive X-ray diffraction shows after deposition 200-450 MPa in tension in the longitudinal direction, while the stresses reach almost zero when the stress relief treatment is carried out. ; Funders: “Dobeneck-Technologie-Stiftung” and the COMET program within the K2 Center “Integrated Computational Material, Process and Product Engineering (IC-MPPE)” [859480];