People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rabe, David
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2023Weft-knitted active joints for smart composite applications
- 2023Investigation of the Bonding Mechanism between Overlapping Textile Layers for FRP Repair Based on Dry Textile Patchescitations
- 2022From Grave to Cradle - Development of Weft Knitted Fabrics Based on Hybrid Yarns from Recycled Carbon Fibre Reclaimed by Solvolytic Process from of EOL-Componentscitations
- 2022Recycling of Carbon Fibres and Subsequent Upcycling for the Production of 3D-CFRP Partscitations
- 2021Novel Repair Procedure for CFRP Components Instead of EOLcitations
- 2020Matrix Decomposition of Carbon-Fiber-Reinforced Plastics via the Activation of Semiconductorscitations
Places of action
Organizations | Location | People |
---|
article
Matrix Decomposition of Carbon-Fiber-Reinforced Plastics via the Activation of Semiconductors
Abstract
<p>The present study proposed a novel process for the matrix decomposition of carbon-fiber-reinforced plastics (CFRPs). For this purpose, the influence of ultraviolet (UV) radiation paired with semiconductors on CFRP was analyzed. Then, suitable process parameters for superficial and in-depth matrix decomposition in CFRP were evaluated. The epoxy resin was decomposed most effectively without damaging the embedded carbon fiber by using a UV light-emitting diode (LED) spotlight (395 nm, Semray 4103 by Heraeus Noblelight) at a power level of 66% compared to the maximum power of the spotlight. Using a distance of 10 mm and a treatment duration of only 35-40 s achieved a depth of two layers with an area of 750 mm<sup>2</sup>, which is suitable for technological CFRP repair procedures. In addition to the characterization of the process, the treated CFRP samples were analyzed based on several analytical methods, namely, light microscopy (LM), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Subsequently, the prepared carbon fibers (CFs) were tested using filament tensiometry, single filament tensile tests, and thermogravimetric measurements. All analyses showed the power level of 66% to be superior to the use of 96% power. The gentle ("fiber friendly") matrix destruction reduced the damage to the surface of the fibers and maintained their properties, such as maximum elongation and maximum tensile strength, at the level of the reference materials.</p>