Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Böhnke, Philippa Ruth Christine

  • Google
  • 3
  • 12
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2022Protective Coating for Electrically Conductive Yarns for the Implementation in Smart Textiles3citations
  • 2021Novel Repair Procedure for CFRP Components Instead of EOL4citations
  • 2020Matrix Decomposition of Carbon-Fiber-Reinforced Plastics via the Activation of Semiconductors3citations

Places of action

Chart of shared publication
Winger, Hans
1 / 3 shared
Warncke, Mareen
1 / 1 shared
Kruppke, Iris
3 / 12 shared
Wieczorek, Florian
1 / 1 shared
Cherif, Chokri
3 / 112 shared
Lüneburg, Lisa-Marie
1 / 1 shared
Häntzsche, Eric Martin
3 / 23 shared
Nocke, Andreas
1 / 34 shared
Rabe, David
2 / 6 shared
Gereke, Thomas
1 / 14 shared
Richter, Mirko
1 / 3 shared
Kruppke, Benjamin
1 / 5 shared
Chart of publication period
2022
2021
2020

Co-Authors (by relevance)

  • Winger, Hans
  • Warncke, Mareen
  • Kruppke, Iris
  • Wieczorek, Florian
  • Cherif, Chokri
  • Lüneburg, Lisa-Marie
  • Häntzsche, Eric Martin
  • Nocke, Andreas
  • Rabe, David
  • Gereke, Thomas
  • Richter, Mirko
  • Kruppke, Benjamin
OrganizationsLocationPeople

article

Matrix Decomposition of Carbon-Fiber-Reinforced Plastics via the Activation of Semiconductors

  • Kruppke, Iris
  • Gereke, Thomas
  • Cherif, Chokri
  • Richter, Mirko
  • Kruppke, Benjamin
  • Böhnke, Philippa Ruth Christine
  • Häntzsche, Eric Martin
  • Rabe, David
Abstract

<p>The present study proposed a novel process for the matrix decomposition of carbon-fiber-reinforced plastics (CFRPs). For this purpose, the influence of ultraviolet (UV) radiation paired with semiconductors on CFRP was analyzed. Then, suitable process parameters for superficial and in-depth matrix decomposition in CFRP were evaluated. The epoxy resin was decomposed most effectively without damaging the embedded carbon fiber by using a UV light-emitting diode (LED) spotlight (395 nm, Semray 4103 by Heraeus Noblelight) at a power level of 66% compared to the maximum power of the spotlight. Using a distance of 10 mm and a treatment duration of only 35-40 s achieved a depth of two layers with an area of 750 mm<sup>2</sup>, which is suitable for technological CFRP repair procedures. In addition to the characterization of the process, the treated CFRP samples were analyzed based on several analytical methods, namely, light microscopy (LM), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Subsequently, the prepared carbon fibers (CFs) were tested using filament tensiometry, single filament tensile tests, and thermogravimetric measurements. All analyses showed the power level of 66% to be superior to the use of 96% power. The gentle ("fiber friendly") matrix destruction reduced the damage to the surface of the fibers and maintained their properties, such as maximum elongation and maximum tensile strength, at the level of the reference materials.</p>

Topics
  • impedance spectroscopy
  • surface
  • polymer
  • Carbon
  • scanning electron microscopy
  • atomic force microscopy
  • semiconductor
  • strength
  • activation
  • tensile strength
  • resin
  • decomposition
  • tensiometry