People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kubit, Andrzej
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2024Analysis of the Influence of Manufacturing Technology on Selected Static, Fatigue and Morphological Properties of CFRP Composites
- 2024AA5754–Al2O3 Nanocomposite Prepared by Friction Stir Processing: Microstructural Evolution and Mechanical Performancecitations
- 2024Fatigue properties of spot joints of metal-plastic composites with DP 800 steel prepared by ultrasound resistance spot weldingcitations
- 2024Effects of forming techniques on residual stresses in stiffening ribs of sandwich panelscitations
- 2021Surface Finish Analysis in Single Point Incremental Sheet Forming of Rib-Stiffened 2024-T3 and 7075-T6 Alclad Aluminium Alloy Panelscitations
- 2020Strength Analysis of a Rib-Stiffened GLARE-Based Thin-Walled Structurecitations
- 2020Residual Stresses and Surface Roughness Analysis of Truncated Cones of Steel Sheet Made by Single Point Incremental Formingcitations
Places of action
Organizations | Location | People |
---|
article
Strength Analysis of a Rib-Stiffened GLARE-Based Thin-Walled Structure
Abstract
<jats:p>This paper presents a new product, a glass laminate aluminium-reinforced epoxy (GLARE)-based thin-walled structure with a stiffener in the form of a longitudinal rib. The stiffening rib in an outer metallic layer of a GLARE-based panel was fabricated by the incremental sheet forming technique and Alclad 2024-T3 aluminium alloy sheets were used as adherends. The strength properties of the adhesive joint between the layers of the fibre metal laminates (FMLs) were determined in a uniaxial tensile test, peel drum test, tensile/shear test and short-beam three-point-bending test. Two variants of FMLs were considered, with an adhesive film and without an adhesive film between the adherends and the epoxy/glass prepreg. The FMLs were tested at three different temperatures that corresponded to those found under real aircraft operating conditions, i.e., −60 °C, room temperature and +80 °C. It was found that the temperatures do not affect the tensile strength and shear strength of the FMLs tested. However, there was a noticeable increase in the stiffness of samples stretched at reduced temperature. An additional adhesive film layer between the adherends and the glass/epoxy prepreg significantly improves the static peeling strength of the joint both at reduced and at elevated temperatures. A clear increase in the critical force at which buckling occurs has been clearly demonstrated in the uniaxial compression test of GLARE-based rib-stiffened panels. In the case of GLARE-based rib-stiffened panels, the critical force averaged 15,370 N, while for the non-embossed variant, it was 11,430 N, which translates into a 34.5% increase in critical force.</jats:p>