Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dumitraschkewitz, Phillip

  • Google
  • 10
  • 31
  • 237

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2024Unraveling the potential of Cu addition and cluster hardening in Al-Mg-Si alloys2citations
  • 2023In situ transmission electron microscopy as a toolbox for the emerging science of nanometallurgy1citations
  • 2023Fast differential scanning calorimetry to mimic additive manufacturing processing: specific heat capacity analysis of aluminium alloys8citations
  • 2023Strain-induced clustering in Al alloys5citations
  • 2022MEMS-Based in situ electron-microscopy investigation of rapid solidification and heat treatment on eutectic Al-Cu5citations
  • 2021Giant hardening response in AlMgZn(Cu) alloys111citations
  • 2020Microstructural Change during the Interrupted Quenching of the AlZnMg(Cu) Alloy AA70509citations
  • 2019Size-dependent diffusion controls natural aging in aluminium alloys66citations
  • 2017Impact of Alloying on Stacking Fault Energies in γ-TiAl30citations
  • 2016Analysis of initial clustering in Al-Mg-Si alloys via atom probe tomographycitations

Places of action

Chart of shared publication
Stemper, Lukas
2 / 12 shared
Schmid, Florian
2 / 8 shared
Pogatscher, Stefan
9 / 61 shared
Aster, Philip
2 / 2 shared
Tunes, Matheus Araujo
4 / 34 shared
Uggowitzer, Peter J.
7 / 62 shared
Coradini, Diego Santa Rosa
2 / 3 shared
Willenshofer, Patrick
1 / 4 shared
Kremmer, Thomas
3 / 17 shared
Samberger, Sebastian
1 / 7 shared
Quick, Cameron
1 / 1 shared
Schawe, Jürgen E. K.
1 / 14 shared
Strobel, Katharina
1 / 2 shared
Tkadletz, Michael
1 / 14 shared
Falkinger, Georg
1 / 16 shared
Kutleša, Peter
1 / 1 shared
Ramasamy, Parthiban
1 / 16 shared
Quick, Cameron R.
1 / 1 shared
Marchand, Daniel
1 / 1 shared
Curtin, William A.
1 / 2 shared
Martin, Francisca Mendez
1 / 12 shared
Tosone, Ramona
1 / 2 shared
Pöschmann, Daniel
1 / 2 shared
Ebner, Thomas
1 / 8 shared
Kolb, Gernot
1 / 1 shared
Löffler, Jörg F.
1 / 22 shared
Gerstl, Stephan S. A.
1 / 2 shared
Holec, David
1 / 25 shared
Mayer, Svea
1 / 56 shared
Clemens, Helmut
1 / 120 shared
Gerstl, Stephan
1 / 2 shared
Chart of publication period
2024
2023
2022
2021
2020
2019
2017
2016

Co-Authors (by relevance)

  • Stemper, Lukas
  • Schmid, Florian
  • Pogatscher, Stefan
  • Aster, Philip
  • Tunes, Matheus Araujo
  • Uggowitzer, Peter J.
  • Coradini, Diego Santa Rosa
  • Willenshofer, Patrick
  • Kremmer, Thomas
  • Samberger, Sebastian
  • Quick, Cameron
  • Schawe, Jürgen E. K.
  • Strobel, Katharina
  • Tkadletz, Michael
  • Falkinger, Georg
  • Kutleša, Peter
  • Ramasamy, Parthiban
  • Quick, Cameron R.
  • Marchand, Daniel
  • Curtin, William A.
  • Martin, Francisca Mendez
  • Tosone, Ramona
  • Pöschmann, Daniel
  • Ebner, Thomas
  • Kolb, Gernot
  • Löffler, Jörg F.
  • Gerstl, Stephan S. A.
  • Holec, David
  • Mayer, Svea
  • Clemens, Helmut
  • Gerstl, Stephan
OrganizationsLocationPeople

article

Microstructural Change during the Interrupted Quenching of the AlZnMg(Cu) Alloy AA7050

  • Pöschmann, Daniel
  • Ebner, Thomas
  • Pogatscher, Stefan
  • Kremmer, Thomas
  • Kolb, Gernot
  • Dumitraschkewitz, Phillip
  • Uggowitzer, Peter J.
Abstract

<p>This study reports on the effect of interrupted quenching on the microstructure and mechanical properties of plates made of the AlZnMg(Cu) alloy AA7050. Rapid cooling from the solution heat treatment temperature is interrupted at temperatures between 100 and 200 °C and continued with a very slow further cooling to room temperature. The final material's condition is achieved without or with subsequent artificial ageing. The results show that an improvement in the strength-toughness trade-off can be obtained by using this method. Interrupted quenching at 125 °C with peak artificial ageing leads to a yield strength increase of 27 MPa (538 MPa to 565 MPa) compared to the reference material at the same fracture toughness level. A further special case is the complete omission of an artificial ageing treatment with interrupted quenching at 200 °C. This heat treatment exhibits an 20% increase in fracture toughness (35 to 42 MPa m<sup>-1/2</sup>) while retaining a sufficient yield strength of 512 MPa for industrial applications. A detailed characterization of the relevant microstructural parameters like present phases, phase distribution and precipitate-free zones is performed using transmission electron microscopy and atom probe tomography.</p>

Topics
  • impedance spectroscopy
  • phase
  • strength
  • transmission electron microscopy
  • precipitate
  • aging
  • yield strength
  • fracture toughness
  • quenching
  • atom probe tomography