People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dumitraschkewitz, Phillip
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Unraveling the potential of Cu addition and cluster hardening in Al-Mg-Si alloyscitations
- 2023In situ transmission electron microscopy as a toolbox for the emerging science of nanometallurgycitations
- 2023Fast differential scanning calorimetry to mimic additive manufacturing processing: specific heat capacity analysis of aluminium alloyscitations
- 2023Strain-induced clustering in Al alloyscitations
- 2022MEMS-Based in situ electron-microscopy investigation of rapid solidification and heat treatment on eutectic Al-Cucitations
- 2021Giant hardening response in AlMgZn(Cu) alloyscitations
- 2020Microstructural Change during the Interrupted Quenching of the AlZnMg(Cu) Alloy AA7050citations
- 2019Size-dependent diffusion controls natural aging in aluminium alloyscitations
- 2017Impact of Alloying on Stacking Fault Energies in γ-TiAlcitations
- 2016Analysis of initial clustering in Al-Mg-Si alloys via atom probe tomography
Places of action
Organizations | Location | People |
---|
article
Microstructural Change during the Interrupted Quenching of the AlZnMg(Cu) Alloy AA7050
Abstract
<p>This study reports on the effect of interrupted quenching on the microstructure and mechanical properties of plates made of the AlZnMg(Cu) alloy AA7050. Rapid cooling from the solution heat treatment temperature is interrupted at temperatures between 100 and 200 °C and continued with a very slow further cooling to room temperature. The final material's condition is achieved without or with subsequent artificial ageing. The results show that an improvement in the strength-toughness trade-off can be obtained by using this method. Interrupted quenching at 125 °C with peak artificial ageing leads to a yield strength increase of 27 MPa (538 MPa to 565 MPa) compared to the reference material at the same fracture toughness level. A further special case is the complete omission of an artificial ageing treatment with interrupted quenching at 200 °C. This heat treatment exhibits an 20% increase in fracture toughness (35 to 42 MPa m<sup>-1/2</sup>) while retaining a sufficient yield strength of 512 MPa for industrial applications. A detailed characterization of the relevant microstructural parameters like present phases, phase distribution and precipitate-free zones is performed using transmission electron microscopy and atom probe tomography.</p>