Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bogdanowicz, Krzysztof Artur

  • Google
  • 2
  • 11
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Research of Binary and Ternary Composites Based on Selected Aliphatic or Aliphatic–Aromatic Polymers, 5CB or SWCN toward Biodegradable Electrodes8citations
  • 2018Synthesis and characterization of two new TiO2-containing benzothiazole-based imine composites for organic device applicationscitations

Places of action

Chart of shared publication
Malinowski, Marek
1 / 1 shared
Górska, Natalia
1 / 4 shared
Filapek, Michał
1 / 1 shared
Dąbczyński, Paweł
1 / 6 shared
Iwan, Agnieszka
1 / 3 shared
Fryń, Patryk
1 / 3 shared
Różycka, Anna
1 / 2 shared
Marzec, Monika
1 / 8 shared
Hreniak, Agnieszka
1 / 1 shared
Rysz, Jakub
1 / 16 shared
Pociecha, Damian
1 / 7 shared
Chart of publication period
2020
2018

Co-Authors (by relevance)

  • Malinowski, Marek
  • Górska, Natalia
  • Filapek, Michał
  • Dąbczyński, Paweł
  • Iwan, Agnieszka
  • Fryń, Patryk
  • Różycka, Anna
  • Marzec, Monika
  • Hreniak, Agnieszka
  • Rysz, Jakub
  • Pociecha, Damian
OrganizationsLocationPeople

article

Research of Binary and Ternary Composites Based on Selected Aliphatic or Aliphatic–Aromatic Polymers, 5CB or SWCN toward Biodegradable Electrodes

  • Bogdanowicz, Krzysztof Artur
Abstract

<jats:p>The main goal of this paper was to study the optical, electrical, and thermal properties of hybrid composites based on biodegradable polymers (L,D-poly(lactic acid), polycaprolactone or Ecoflex®), single walled carbon nanotubes (SWCN), and 4′-pentyl-4-biphenylcarbonitrile (5CB). The biodegradable polymers’ binary and ternary compositions were analyzed in detail by ultraviolet and visible (UV–Vis) spectroscopy taking into consideration their chemical structure and interactions with 5CB and SWCN. Differential scanning calorimetry (DSC) studies of the created hybrid layers showed thermal stability and changes in glass transition temperature and melting point in comparison to neat polymers, depending on the chemical structure of the polymer used and the type of composition. Morphology of the created layers were investigated by atomic force and polarizing microscopy. The static contact angle measurements of a water drop showed that all of the neat polymer layers were hydrophobic with angle values ranging from 108° to 115°. In addition, in the case of the Ecoflex® layers, both with and without additives, a rapid sorption of the deposited water drop was observed. Finally, a simple device with poly(ethylene terephthalate) (PET)/indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/poly [[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7): [6,6]-phenyl-C71-butyric acid methyl ester (PC70BM)/Ag/biodegradable polymer:SWCN architecture was constructed and tested using an infrared (IR) thermographic camera to investigate the surface defects on the created hybrid layers. Increasing the SWCN admixture from 0.01 to 0.5% significantly improved the conductivity only in the case of L,D-poly(lactic acid):SWCN (10:0.5), for which above 5 V, a current with a resistance of 3030.7 Ω could be measured. In order to use the created layers as flexible electrodes, the first experiments were carried out with an admixture of SWCN and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) as conductive compounds.</jats:p>

Topics
  • surface
  • compound
  • polymer
  • Carbon
  • experiment
  • nanotube
  • glass
  • glass
  • composite
  • glass transition temperature
  • defect
  • differential scanning calorimetry
  • tin
  • ester
  • microscopy
  • Indium
  • spectroscopy