People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Xu, Yading
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Printing path-dependent two-scale models for 3D printed planar auxetics by material extrusioncitations
- 2020Cementitious cellular composites with auxetic behaviorcitations
- 2020Mechanical behavior of printed strain hardening cementitious compositescitations
- 2020Tunable mechanical behavior of auxetic cementitious cellular composites (CCCs)citations
- 2020Auxetisch cementgebonden composiet
- 2020Auxetic Behavior of Cementitious Cellular Composites Under Uniaxial Compression and Cyclic Loadingcitations
- 2020Mechanical Behavior of Printed Strain Hardening Cementitious Compositescitations
- 2019Creating Strain Hardening Cementitious Composites (SHCCS) Through Use Of Additively Manufactured Polymeric Meshes As Reinforcementcitations
- 2019On The Role Of Soft Inclusions On The Fracture Behaviour Of Cement Pastecitations
- 2019Compression Behaviors Of Cementitious Cellular Composites With Negative Poisson’s Ratiocitations
- 2019An approach to develop printable strain hardening cementitious compositescitations
- 2018Flexural response of cementitious mortar bars reinforced by 3D printed polymeric mesh
Places of action
Organizations | Location | People |
---|
article
Mechanical Behavior of Printed Strain Hardening Cementitious Composites
Abstract
Extrusion based additive manufacturing of cementitious materials has demonstrated strong potential to become widely used in the construction industry. However, the use of this technique in practice is conditioned by a feasible solution to implement reinforcement in such automated process.<br/>One of the most successful ductile materials in civil engineering, strain hardening cementitious composites (SHCC) have a high potential to be employed for three-dimensional printing. The match between the tailored brittle matrix and ductility of the fibres enables these composites to develop multiple cracks when loaded under tension. Using previously developed mixtures, this study<br/>investigates the physical and mechanical performance of printed SHCC. The anisotropic behavior of the materials is explored by means of mechanical tests in several directions and micro computed tomography tests. The results demonstrated a composite showing strain hardening behavior in two<br/>directions explained by the fibre orientation found in the printed elements. Moreover, the printing technique used also has guaranteed an enhanced bond in between the printed layers.