People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dudek, Magdalena
AGH University of Krakow
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2020Samples of Ba1−xSrxCe0.9Y0.1O3−δ, 0 < x < 0.1, with Improved Chemical Stability in CO2-H2 Gas-Involving Atmospheres as Potential Electrolytes for a Proton Ceramic Fuel Cellcitations
- 2020Ionic Transport Properties of P2O5-SiO2 Glassy Protonic Composites Doped with Polymer and Inorganic Titanium-based Fillerscitations
- 2019Utilisation of methylcellulose as a shaping agent in the fabrication of Ba0.95Ca0.05Ce0.9Y0.1O3 proton-conducting ceramic membranes via the gelcasting methodcitations
- 2016Influence of the Organophilisation Process on Properties of the Bentonite Filler and Mechanical Properties of the Clay/Epoxy Nanocompositescitations
- 2016Some observations on the synthesis and electrolytic properties of (Ba1-xCax) (M0.9Y0.1)O3, M = Ce, Zr-based samples modified with calciumcitations
- 2013Synthetic preparation of proton conducting polyvinyl alcohol and TiO2-doped inorganic glasses for hydrogen fuel cell applicationscitations
Places of action
Organizations | Location | People |
---|
article
Samples of Ba1−xSrxCe0.9Y0.1O3−δ, 0 < x < 0.1, with Improved Chemical Stability in CO2-H2 Gas-Involving Atmospheres as Potential Electrolytes for a Proton Ceramic Fuel Cell
Abstract
<jats:p>Comparative studies were performed on variations in the ABO3 perovskite structure, chemical stability in a CO2-H2 gas atmosphere, and electrical conductivity measurements in air, hydrogen, and humidity-involving gas atmospheres of monophase orthorhombic Ba1−xSrxCe0.9Y0.1O3−δ samples, where 0 < x < 0.1. The substitution of strontium with barium resulting in Ba1−xSrxCe0.9Y0.1O3−δ led to an increase in the specific free volume and global instability index when compared to BaCe0.9Y0.1O3−δ. Reductions in the tolerance factor and cell volume were found with increases in the value of x in Ba1−xSrxCe0.9Y0.1O3−δ. Based on the thermogravimetric studies performed for Ba1−xSrxCe0.9Y0.1O3−δ, where 0 < x < 0.1, it was found that modified samples of this type exhibited superior chemical resistance in a CO2 gas atmosphere when compared to BaCe0.9Y0.1O3−δ. The application of broadband impedance spectroscopy enabled the determination of the bulk and grain boundary conductivity of Ba1−xSrxCe0.9Y0.1O3−δ samples within the temperature range 25–730 °C. It was found that Ba0.98Sr0.02Ce0.9Y0.1O3−δ exhibited a slightly higher grain interior and grain boundary conductivity when compared to BaCe0.9Y0.1O3−δ. The Ba0.95Sr0.05Ce0.9Y0.1O3−δ sample also exhibited improved electrical conductivity in hydrogen gas atmospheres or atmospheres involving humidity. The greater chemical resistance of Ba1−xSrxCe0.9Y0.1O3−δ, where x = 0.02 or 0.05, in a CO2 gas atmosphere is desirable for application in proton ceramic fuel cells supplied by rich hydrogen processing gases.</jats:p>