People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Miedzianowska, Justyna
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2021Modified Nanoclays/Straw Fillers as Functional Additives of Natural Rubber Biocompositescitations
- 2020Thermoplastic Elastomeric Composites Filled with Lignocellulose Bioadditives. Part 1: Morphology, Processing, Thermal and Rheological Propertiescitations
- 2020Properties of Chemically Modified (Selected Silanes) Lignocellulosic Filler and Its Application in Natural Rubber Biocompositescitations
- 2020Horsetail (Equisetum Arvense) as a Functional Filler for Natural Rubber Biocompositescitations
- 2019Thermoplastic Elastomer Biocomposites Filled with Cereal Straw Fibers Obtained with Different Processing Methods—Preparation and Propertiescitations
- 2019Natural Rubber Composites Filled with Crop Residues as an Alternative to Vulcanizates with Common Fillerscitations
- 2019Reinforced, Extruded, Isotropic Magnetic Elastomer Composites: Fabrication and Propertiescitations
- 2019Reinforced, Extruded, Isotropic Magnetic Elastomer Composites: Fabrication and Propertiescitations
Places of action
Organizations | Location | People |
---|
article
Thermoplastic Elastomeric Composites Filled with Lignocellulose Bioadditives. Part 1: Morphology, Processing, Thermal and Rheological Properties
Abstract
<jats:p>Thermoplastic elastomer blends based on natural rubber (NR) and ethylene-vinyl acetate copolymer (EVA) with different weight ratios (30, 40, 50, 60 and 70 parts per hundred rubber (phr) of NR) and 10, 20 and 30 phr of straw were prepared and characterized. Current environmental problems were the motivation to produce this type of system, namely: the need to replace plastics at least partly with natural materials; increasing the amount of renewable raw materials and managing excess straw production. When using this bioadditive in traditional materials, the high processing temperature can be problematic, leading to the degradation of straw fibers. The solution can be polymer mixtures that are prepared at significantly lower temperatures. Scanning electron microscope (SEM) imaging was used to investigate the particle size of fibers and phase morphology of composites. Moreover, determination of the thermal properties of the filler and composites showed that the processing temperature used in the production of NR/EVA blends reduces the risk of degradation of the natural filler. Differential scanning calorimetry (DSC) was used to determine the thermal behavior of the filled composites. Finally, rheological tests of materials allow the determination of optimal processing parameters and properties of materials in dynamic conditions. The proposed blends exhibit elastic properties, and due to the lack of chemical cross-linking they can be processed and recycled like thermoplastics. In addition, they offset the disadvantages and combine the advantages of natural rubber and ethylene-vinyl acetate copolymer in the form of thermoplastic elastomeric biocomposites.</jats:p>