People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vaz, Filipe
Laboratoire Bourguignon des Matériaux et Procédés
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (31/31 displayed)
- 2024Recent advances in nanomaterial-based optical biosensors for food safety applications: Ochratoxin-A detection, as case studycitations
- 2024Immobilizing antibody biorecognition layers on Au-TiO<sub>2</sub> thin films: direct (physisorption) vs. DSP-crosslinking (chemisorption) surface functionalizationcitations
- 2024Experimental and Theoretical Studies on Ag Nanoparticles with Enhanced Plasmonic Response, Formed Within Al2O3 Thin Films Deposited by Magnetron Sputteringcitations
- 2024Evaluation of Performance and Longevity of Ti-Cu Dry Electrodes: Degradation Analysis Using Anodic Stripping Voltammetry
- 2023XRD and FTIR analysis of Ti–Si–C–ON coatings for biomedical applications
- 2023Functionalization of gutta-percha surfaces with argon and oxygen plasma treatments to enhance adhesivenesscitations
- 2023Thermoelectric study of Co2FeAl thin films grown onto flexible P(VDF-TrFE-CFE) terpolymercitations
- 2022Chitosan Micro-Membranes with Integrated Gold Nanoparticles as an LSPR-Based Sensing Platformcitations
- 2022Flexible multifunctional hard coatings based on chromium oxynitride for pressure-sensing applicationscitations
- 2022Flexible TiCux Thin Films with Dual Antimicrobial and Piezoresistive Characteristicscitations
- 2021Molybdenum Oxide Thin Films Grown on Flexible ITO-Coated PET Substratescitations
- 2021Me-doped Ti-Me intermetallic thin films used for dry biopotential electrodes: a comparative case studycitations
- 2020Dry electrodes for surface electromyography based on architectured titanium thin filmscitations
- 2020Fabrication, Characterization and Implementation of Thermo Resistive TiCu(N,O) Thin Films in a Polymer Injection Mold.citations
- 2020Magnetic Response Dependence of ZnO Based Thin Films on Ag Doping and Processing Architecturecitations
- 2019Nanocomposite thin films based on Au-Ag nanoparticles embedded in a CuO matrix for localized surface plasmon resonance sensingcitations
- 2019High performance piezoresistive response of nanostructured ZnO/Ag thin films for pressure sensing applicationscitations
- 2019High performance piezoresistive response of nanostructured ZnO/Ag thin films for pressure sensing applicationscitations
- 2018Optimization of nanocomposite Au/TiO2 thin films towards LSPR optical-sensingcitations
- 2018Thin films of Ag–Au nanoparticles dispersed in TiO2: influence of composition and microstructure on the LSPR and SERS responsescitations
- 2018Nano-sculptured Janus-like TiAg thin films obliquely deposited by GLAD co-sputtering for temperature sensingcitations
- 2018Tuning electrical resistivity anisotropy of ZnO thin films for resistive sensor applications
- 2016Influence of Cu content on the structural and morphological features of TixCuy intermetallic thin films for biosignals acquisition
- 2015Study of the electrical behavior of nanostructured Ti-Ag thin films prepared by Glancing Angle Deposition
- 2014Electrochemical behaviour of nanocomposite Agx:TiN thin filmsfor dry biopotential electrodescitations
- 2014Process monitoring during AlNxOy deposition by reactive magnetron sputtering and correlation with the film's propertiescitations
- 2013TiAgx thin films for lower limb prosthesis pressure sensors: Effect of composition and structural changes on the electrical and thermal response of the filmscitations
- 2013Growth characteristics and properties of nanocomposite Ag-doped TiN thin films produced by glancing angle deposition
- 2013Nanocomposite Ag:TiN thin films for dry biopotential electrodescitations
- 2012Analysis of multifunctional titanium oxycarbide films as a function of oxygen additioncitations
- 2008The contribution of grain boundary barriers to the electrical conductivity of titanium oxide thin filmscitations
Places of action
Organizations | Location | People |
---|
article
Fabrication, Characterization and Implementation of Thermo Resistive TiCu(N,O) Thin Films in a Polymer Injection Mold.
Abstract
This paper presents the development of metallic thermoresistive thin film, providing an innovative solution to dynamically control the temperature during the injection molding process of polymeric parts. The general idea was to tailor the signal response of the nitrogen- and oxygen-doped titanium-copper thin film (TiCu(N,O))-based transducers, in order to optimize their use in temperature sensor devices. The results reveal that the nitrogen or oxygen doping level has an evident effect on the thermoresistive response of TiCu(N,O) films. The temperature coefficient of resistance values reached 2.29 × 10 −2 °C −1 , which was almost six times higher than the traditional platinum-based sensors. In order to demonstrate the sensing capabilities of thin films, a proof-of-concept experiment was carried out, integrating the developed TiCu(N,O) films with the best response in an injection steel mold, connected to a data acquisition system. These novel sensor inserts proved to be sensitive to the temperature evolution during the injection process, directly in contact with the polymer melt in the mold, demonstrating their possible use in real operation devices where temperature profiles are a major parameter, such as the injection molding process of polymeric parts. ; This work was supported by the project SAM—Smart Active Mold (contract ANI—33/SI/2015) by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UID/FIS/04650/2019, and from the Basque Government Industry Department under the ELKARTEK and HAZITEK programs.