Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Moseke, Claus

  • Google
  • 2
  • 7
  • 20

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Physicochemical degradation of calcium magnesium phosphate (stanfieldite) based bone replacement materials and the effect on their cytocompatibility8citations
  • 2020Nanotopographical Coatings Induce an Early Phenotype-Specific Response of Primary Material-Resident M1 and M2 Macrophages12citations

Places of action

Chart of shared publication
Schaufler, Christian
1 / 1 shared
Brückner, Manuel
1 / 2 shared
Meyer-Lindenberg, Andrea
1 / 9 shared
Vorndran, Elke
1 / 4 shared
Stahlhut, Philipp
1 / 4 shared
Schmitt, Anna-Maria
1 / 2 shared
Geroneit, Isabel
1 / 1 shared
Chart of publication period
2023
2020

Co-Authors (by relevance)

  • Schaufler, Christian
  • Brückner, Manuel
  • Meyer-Lindenberg, Andrea
  • Vorndran, Elke
  • Stahlhut, Philipp
  • Schmitt, Anna-Maria
  • Geroneit, Isabel
OrganizationsLocationPeople

article

Nanotopographical Coatings Induce an Early Phenotype-Specific Response of Primary Material-Resident M1 and M2 Macrophages

  • Moseke, Claus
Abstract

<jats:p>Implants elicit an immunological response after implantation that results in the worst case in a complete implant rejection. This biomaterial-induced inflammation is modulated by macrophages and can be influenced by nanotopographical surface structures such as titania nanotubes or fractal titanium nitride (TiN) surfaces. However, their specific impact on a distinct macrophage phenotype has not been identified. By using two different levels of nanostructures and smooth samples as controls, the influence of tubular TiO2 and fractal TiN nanostructures on primary human macrophages with M1 or M2-phenotype was investigated. Therefore, nanotopographical coatings were either, directly generated by physical vapor deposition (PVD) or by electrochemical anodization of titanium PVD coatings. The cellular response of macrophages was quantitatively assessed to demonstrate a difference in biocompatibility of nanotubes in respect to human M1 and M2-macrophages. Depending on the tube diameter of the nanotubular surfaces, low cell numbers and impaired cellular activity, was detected for M2-macrophages, whereas the impact of nanotubes on M1-polarized macrophages was negligible. Importantly, we could confirm this phenotypic response on the fractal TiN surfaces. The results indicate that the investigated topographies specifically impact the macrophage M2-subtype that modulates the formation of the fibrotic capsule and the long-term response to an implant.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • nanotube
  • physical vapor deposition
  • nitride
  • titanium
  • tin
  • biocompatibility