People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Piotrowski, Tomasz
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2021Development of Impact-Echo Multitransducer Device for Automated Concrete Homogeneity Assessmentcitations
- 2020Influence of Activators on Mechanical Properties of Modified Fly Ash Based Geopolymer Mortarscitations
- 2020Influence of polymer modification on the microstructure of shielding concrete citations
- 2020Relation between microstructure, technical properties and neutron radiation shielding efficiency of concretecitations
- 2018Mechanical Properties of Polymer Cement-Fiber-Reinforced Concrete (PC-FRC): Comparison Based on Experimental Studies
- 2016Bound water content measurement in cement pastes by stoichiometric and gravimetric analyses
- 2014Near-to-surface properties affecting bond strength in concrete repaircitations
- 2013Surface properties of concrete and criteria for adhesion of repair systems
- 2013Surface properties of concrete and criteria for adhesion of repair systems
- 2013Effect of introducing recycled polymer aggregate on the properties of C-PC compositescitations
- 2009Some theoretical and practical considerations about surface preparation of concrete and adhesion of repair systems.
Places of action
Organizations | Location | People |
---|
article
Influence of Activators on Mechanical Properties of Modified Fly Ash Based Geopolymer Mortars
Abstract
The aim of this work was to study the influence of the type of activator on the formulation of modified fly ash based geopolymer mortars. Geopolymer and alkali-activated materials (AAM) were made from fly ashes derived from coal and biomass combustion in thermal power plants. Basic activators (NaOH, CaO, and Na2SiO3) were mixed with fly ashes in order to develop binding properties other than those resulting from the use of Portland cement. The results showed that the mortars with 5 mol/dm3 of NaOH and 100 g of Na2SiO3 (N5-S22) gave a greater compressive strength than other mixes. The compressive strengths of analyzed fly ash mortars with activators N5-S22 and N5-C10 (5 mol/dm3 NaOH and 10% CaO) varied from 14.3 MPa to 5.9 MPa. The better properties of alkali-activated mortars with regular fly ash were influenced by a larger amount of amorphous silica and alumina phases. Scanning electron microscopy and calorimetry analysis provided a better understanding of the observed mechanisms.