Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chyliński, F.

  • Google
  • 2
  • 3
  • 21

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Undissolved Ilmenite Mud from TiO2 Production—Waste or a Valuable Addition to Portland Cement Composites?10citations
  • 2020Application of Ilmenite Mud Waste as an Addition to Concrete 11citations

Places of action

Chart of shared publication
Bobrowicz, Jan
1 / 1 shared
Łukowski, Paweł
2 / 14 shared
Kuczyński, K.
1 / 2 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Bobrowicz, Jan
  • Łukowski, Paweł
  • Kuczyński, K.
OrganizationsLocationPeople

article

Application of Ilmenite Mud Waste as an Addition to Concrete

  • Chyliński, F.
  • Łukowski, Paweł
  • Kuczyński, K.
Abstract

Storing waste in concrete instead of landfills is environmentally friendly and also might make concrete more sustainable if some part is replaced with cement. This article presents a new way of valorising hazardous waste, namely ilmenite MUD from the production of titanium dioxide, which is used as a reactive additive to concrete. In fact, there are currently no articles presenting the way of valorisation that is presented in this paper. The global annual production of MUD is estimated to be about 0.7 million tons. Valorisation is possible due to the additional rinsing and filtering in the factory, which also confirms the novelty of this article. In this operation, the most hazardous compounds are returned back to the factory process. Rinsed mud (RMUD) is a pozzolanic reactive material with the potential use as a substitute of a part of Portland cement in concrete and other cementitious binders, like siliceous fly ash (FA). The level of RMUD pozzolanic activity is as high as the activity of siliceous fly ash. Comparative tests of concretes containing RMUD and fly ash, such as compressive strength, bending strength and shrinkage, were conducted. The concrete containing RMUD reached almost 90% of compressive and 108% of bending strength after 28 days of curing, compared to FA concrete. The results presented in this article are very promising and might point to a new way of valorising ilmenite mud waste.

Topics
  • impedance spectroscopy
  • compound
  • strength
  • cement
  • titanium
  • curing