People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Arab, Madjid
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023Au/WO3 nanocomposite based photocatalyst for enhanced solar photocatalytic activitycitations
- 2023Plasmonic Photocatalysts Based on Au Nanoparticles and WO3 for Visible Light-Induced Photocatalytic Activitycitations
- 2023Plasmonic Photocatalysts Based on Au Nanoparticles and WO3 for Visible Light-Induced Photocatalytic Activitycitations
- 2023LaFeO3 thin films on Yttria Stabilized Zirconia flexible substrate
- 2020Voltammetric Sensor Based on Molecularly Imprinted Chitosan-Carbon Nanotubes Decorated with Gold Nanoparticles Nanocomposite Deposited on Boron-Doped Diamond Electrodes for Catechol Detectioncitations
- 2020Voltammetric Sensor Based on Molecularly Imprinted Chitosan-Carbon Nanotubes Decorated with Gold Nanoparticles Nanocomposite Deposited on Boron-Doped Diamond Electrodes for Catechol Detectioncitations
- 2017Synthesis, characterization and luminescent properties ofSr 1-x Pb x WO 4 solid solution (x=0, 0.5 and 1)citations
- 2012Carbon nanotubes/ceria composite layers deposited on surface acoustic wave devices for gas detection at room temperaturecitations
- 2004Enhancement of exciton emission from ZnO nanocrystalline films by pulsed laser annealingcitations
- 2004ENHANCEMENT OF EXCITON EMISSION FROM ZnO NANOCRYSTALLINE FILMS BY PULSED LASER ANNEALING
Places of action
Organizations | Location | People |
---|
article
Voltammetric Sensor Based on Molecularly Imprinted Chitosan-Carbon Nanotubes Decorated with Gold Nanoparticles Nanocomposite Deposited on Boron-Doped Diamond Electrodes for Catechol Detection
Abstract
<jats:p>Phenolic compounds such as catechol are present in a wide variety of foods and beverages; they are of great importance due to their antioxidant properties. This research presents the development of a sensitive and biocompatible molecular imprinted sensor for the electrochemical detection of catechol, based on natural biopolymer-electroactive nanocomposites. Gold nanoparticle (AuNP)-decorated multiwalled carbon nanotubes (MWCNT) have been encapsulated in a polymeric chitosan (CS) matrix. This chitosan nanocomposite has been used to develop a molecular imprinted polymers (MIP) in the presence of catechol on a boron-doped diamond (BDD) electrode. The structure of the decorated MWCNT has been studied by TEM, whereas the characterization of the sensor surface has been imaged by AFM, demonstrating the satisfactory adsorption of the film and the adequate coverage of the decorated carbon nanotubes on the electrode surface. The electrochemical response of the sensor has been analyzed by cyclic voltammetry (CV) where excellent reproducibility and repeatability to catechol detection in the range of 0 to 1 mM has been found, with a detection limit of 3.7 × 10−5 M. Finally, the developed sensor was used to detect catechol in a real wine sample.</jats:p>