People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Garbacz, Andrzej
Warsaw University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (34/34 displayed)
- 2021Nanomodification, Hybridization and Temperature Impact on Shear Strength of Basalt Fiber-Reinforced Polymer Barscitations
- 2021Development of Impact-Echo Multitransducer Device for Automated Concrete Homogeneity Assessmentcitations
- 2020Influence of Activators on Mechanical Properties of Modified Fly Ash Based Geopolymer Mortarscitations
- 2020Influence of polymer modification on the microstructure of shielding concrete citations
- 2020Specification Guidelines for Surface Preparation of Concrete prior to Repair
- 2020The effect of temperature on the mechanical properties of hybrid FRP bars applicable for the reinforcing of concrete structurescitations
- 2020Relation between microstructure, technical properties and neutron radiation shielding efficiency of concretecitations
- 2018Development of Innovative HFRP Barscitations
- 2018On Mechanical Characteristics of HFRP Bars with Various Types of Hybridizationcitations
- 2016Effects of limestone fillers on surface free energy and electrical conductivity of the interstitial solution of cement mixes
- 2016A quantitative approach to the concept of concrete repair compatibility
- 2015Concrete Surface Engineeringcitations
- 2015Tensile properties of polymer repair materials - effect of test parameters
- 2015Properties of Cement Mortars Modified with Ceramic Waste Fillers citations
- 2015Tensile Properties of Polymer Repair Materials - effect of test parameters
- 2014Effect of misalignment on pulloff test results: numerical and experimental assessmentscitations
- 2014Near-to-surface properties affecting bond strength in concrete repaircitations
- 2014Effects of limestone fillers on surface free energy and electrical conductivity of the interstitial solution of cement mixescitations
- 2014Effects of limestone fillers on surface free energy and electrical conductivity of the interstitial solution of cement mixescitations
- 2013Concrete-like polymer composites with fly ashes – Comparative studycitations
- 2013Surface properties of concrete and criteria for adhesion of repair systems
- 2013Surface properties of concrete and criteria for adhesion of repair systems
- 2013A surface engineering approach applicable to concrete repair engineeringcitations
- 2013Effect of introducing recycled polymer aggregate on the properties of C-PC compositescitations
- 2013Investigation on Concrete Beams Reinforced with Basalt Rebars as an Effective Alternative of Conventional R/C Structurescitations
- 2009Evaluation of the effect of load eccentricity on pull-off strength
- 2009Surfology: concrete substrate evaluation prior to repair
- 2009New trends in concrete-polymer composite materials and systems
- 2009Some theoretical and practical considerations about surface preparation of concrete and adhesion of repair systems.
- 2008New trends in concrete-polymers composite materials and systems
- 2006Relationship between surface characteristics and superficial cohesion of concrete
- 2005Relationship between surface characteristics and superficial cohesion of concrete
- 2005Effect of concrete surface treatment on adhesion in repair systemscitations
- 2001On the characterization of polymer concrete fracture surfacecitations
Places of action
Organizations | Location | People |
---|
article
Influence of polymer modification on the microstructure of shielding concrete
Abstract
In this paper an analysis of the influence of polymer modification on the microstructure,shielding properties against neutrons, and compressive strength of heavy-weight magnetiteconcrete is carried out. The modifications involve the addition of acrylic or epoxy dispersions aswell as micro- or/and macrofibers. A computer image analysis method is used to evaluate themicrostructure of concretes and parameters of pore structure are calculated; these parametersinclude relative volume fraction, relative specific surface area, and pore arrangement ratios,including a proprietary ratio based on Voronoi tessellation. An assessment of significance ofdifferences between stereological parameters of reference concrete and polymer modified concretes,as well as the impact of polymer form (dispersion or fibers) on shielding properties and compressivestrength is carried out using Student’s t-test. The results show that except for the effect of theaddition of both polypropylene micro- and macrofibers on the relative volume of pores, all othermodifications result in statistically significant changes in the values of stereological parameters.Nevertheless, it is shown that neither polymer dispersions nor fibers have a statistically significantimpact on shielding properties, but that they do influence compressive strength.