Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Weißensteiner, Irmgard

  • Google
  • 15
  • 53
  • 403

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (15/15 displayed)

  • 2024Effect of cold rolling route and annealing on the microstructure and mechanical properties of AISI 316 L stainless steel10citations
  • 2024Impact of Surface Microstructure and Properties of Aluminum Electrodes on the Plating/Stripping Behavior of Aluminum-Based Batteries Using Imidazolium-Based Electrolytecitations
  • 2023Processing and microstructure–property relations of Al-Mg-Si-Fe crossover alloys31citations
  • 2023Unveiling the strengthening mechanisms of as-cast micro-alloyed CrMnFeCoNi high-entropy alloys25citations
  • 2023Precipitation behavior of hexagonal carbides in a C containing intermetallic γ-TiAl based alloy3citations
  • 2023Fine-grained aluminium crossover alloy for high-temperature sheet forming27citations
  • 2022High Fe content in Al-Mg-Si wrought alloys facilitates excellent mechanical properties27citations
  • 2022Mitigating the detrimental effects of galvanic corrosion by nanoscale composite architecture design7citations
  • 2021Synergistic alloy design concept for new high-strength Al–Mg–Si thick plate alloys8citations
  • 2021Influence of Fe and Mn on the Microstructure Formation in 5xxx Alloys—Part II: Evolution of Grain Size and Texture7citations
  • 2021Influence of Fe and Mn on the Microstructure Formation in 5xxx Alloys—Part I: Evolution of Primary and Secondary Phases22citations
  • 2020Evolution of microstructure and texture in laboratory- and industrial-scaled production of automotive Al-sheets18citations
  • 2020Mg-alloys for forging applications-A review87citations
  • 2020Mechanism of low temperature deformation in aluminium alloys106citations
  • 2019Deformation-induced phase transformation in a Co-Cr-W-Mo alloy studied by high-energy X-ray diffraction during in-situ compression tests25citations

Places of action

Chart of shared publication
Mahmudi, Reza
1 / 2 shared
Mohammadzehi, Sara
1 / 1 shared
Roostaei, Milad
2 / 4 shared
Mirzadeh, Hamed
2 / 8 shared
Razaz, Ghadir
1 / 5 shared
Pogatscher, Stefan
11 / 61 shared
Trink, Bernhard
3 / 4 shared
Örtegren, Jonas
1 / 4 shared
Arshadi Rastabi, Shahrzad
1 / 3 shared
Strobel, Katharina
1 / 2 shared
Hofer-Roblyek, Anna
1 / 1 shared
Uggowitzer, Peter J.
10 / 62 shared
Zamani, Mohammad Reza
1 / 2 shared
Malekan, Mehdi
1 / 1 shared
Wartbichler, Reinhold
1 / 6 shared
Burtscher, Michael
1 / 14 shared
Bernhard, Christian
1 / 53 shared
Kirchheimer, Katharina
1 / 2 shared
Clemens, Helmut
2 / 120 shared
Kiener, Daniel
1 / 39 shared
Stemper, Lukas
1 / 12 shared
Kainz, Christina
1 / 9 shared
Samberger, Sebastian
1 / 7 shared
Strobl, Katharina
1 / 1 shared
Weinberg, Annelie M.
1 / 3 shared
Pippan, Reinhard
1 / 48 shared
Sommer, Nicole G.
1 / 2 shared
Cihova, Martina
1 / 7 shared
Schmutz, Patrik
1 / 36 shared
Eckert, Jürgen
1 / 1035 shared
Renk, Oliver
1 / 15 shared
Steyskal, Eva-Maria
1 / 2 shared
Tkadletz, Michael
1 / 14 shared
Morak, Roland
1 / 2 shared
Ebner, Thomas
1 / 8 shared
Schmid, Florian
1 / 8 shared
Kremmer, Thomas
3 / 17 shared
Tunes, Matheus Araujo
1 / 34 shared
Grasserbauer, Jakob
3 / 3 shared
Falkinger, Georg
4 / 16 shared
Mitsche, Stefan
1 / 40 shared
Gneiger, Stefan
1 / 14 shared
Papenberg, Nikolaus P.
1 / 2 shared
Schäublin, Robin
1 / 9 shared
Schökel, Alexander
1 / 14 shared
Gruber, Belinda
1 / 2 shared
Spieckermann, Florian
1 / 31 shared
Grabner, Florian
1 / 8 shared
Maier-Kiener, Verena
1 / 24 shared
Stark, Andreas
1 / 148 shared
Erdely, Petra
1 / 8 shared
Antretter, Thomas
1 / 37 shared
Petersmann, Manuel
1 / 7 shared
Chart of publication period
2024
2023
2022
2021
2020
2019

Co-Authors (by relevance)

  • Mahmudi, Reza
  • Mohammadzehi, Sara
  • Roostaei, Milad
  • Mirzadeh, Hamed
  • Razaz, Ghadir
  • Pogatscher, Stefan
  • Trink, Bernhard
  • Örtegren, Jonas
  • Arshadi Rastabi, Shahrzad
  • Strobel, Katharina
  • Hofer-Roblyek, Anna
  • Uggowitzer, Peter J.
  • Zamani, Mohammad Reza
  • Malekan, Mehdi
  • Wartbichler, Reinhold
  • Burtscher, Michael
  • Bernhard, Christian
  • Kirchheimer, Katharina
  • Clemens, Helmut
  • Kiener, Daniel
  • Stemper, Lukas
  • Kainz, Christina
  • Samberger, Sebastian
  • Strobl, Katharina
  • Weinberg, Annelie M.
  • Pippan, Reinhard
  • Sommer, Nicole G.
  • Cihova, Martina
  • Schmutz, Patrik
  • Eckert, Jürgen
  • Renk, Oliver
  • Steyskal, Eva-Maria
  • Tkadletz, Michael
  • Morak, Roland
  • Ebner, Thomas
  • Schmid, Florian
  • Kremmer, Thomas
  • Tunes, Matheus Araujo
  • Grasserbauer, Jakob
  • Falkinger, Georg
  • Mitsche, Stefan
  • Gneiger, Stefan
  • Papenberg, Nikolaus P.
  • Schäublin, Robin
  • Schökel, Alexander
  • Gruber, Belinda
  • Spieckermann, Florian
  • Grabner, Florian
  • Maier-Kiener, Verena
  • Stark, Andreas
  • Erdely, Petra
  • Antretter, Thomas
  • Petersmann, Manuel
OrganizationsLocationPeople

article

Evolution of microstructure and texture in laboratory- and industrial-scaled production of automotive Al-sheets

  • Pogatscher, Stefan
  • Grasserbauer, Jakob
  • Falkinger, Georg
  • Mitsche, Stefan
  • Weißensteiner, Irmgard
  • Uggowitzer, Peter J.
Abstract

<p>With the rising importance of aluminum sheets for automotive applications, the influence of microstructure and texture on mechanical properties and on forming behavior has gained re-increased interest in recent years. This paper provides an introduction to the topic and demonstrates the evolution of microstructure and texture in the standard alloys EN AW-5182 and EN AW-6016 for different processing scales. Moreover, strategies for texture and microstructure characterization of automotive Al-sheets are discussed. As the development of alloys or processes usually starts in laboratory facilities, the transferability to the industrial scale of the results thereof is studied. Adetailed analysis of the entire processing chain shows good conformity of careful laboratory production with the industrial production concerning microstructure as well as qualitative and quantitative texture evolution for EN AW-5182. While comparable grain sizes can be achieved in final annealed sheets of EN AW-6016, quantitative discrepancies in texture occur between the different production scales for some sample states. The results are discussed in light of the basics of plasticity and recrystallisation including the effect of solutes, primary phases, and secondary phases in the alloys.</p>

Topics
  • impedance spectroscopy
  • grain
  • grain size
  • phase
  • aluminium
  • texture
  • forming
  • plasticity