People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wiese, Björn
Helmholtz-Zentrum Hereon
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2024Microstructure refinement by a novel friction-based processing on Mg-Zn-Ca alloy
- 2023Development of a Bioreactor-Coupled Flow-Cell Setup for 3D In Situ Nanotomography of Mg Alloy Biodegradationcitations
- 2022Characterization of the deformation state of magnesium by electrical resistancecitations
- 2020Alloying and Processing Effects on the Microstructure, Mechanical Properties, and Degradation Behavior of Extruded Magnesium Alloys Containing Calcium, Cerium, or Silvercitations
- 2019Acetic Acid Etching of Mg-xGd Alloyscitations
- 2019The Effect of Equal-Channel Angular Pressing on the Microstructure, the Mechanical and Corrosion Properties and the Anti-Tumor Activity of Magnesium Alloyed with Silvercitations
- 2018The Effect of Surface Treatments on the Degradation of Biomedical Mg Alloys—A Review Papercitations
Places of action
Organizations | Location | People |
---|
article
The Effect of Equal-Channel Angular Pressing on the Microstructure, the Mechanical and Corrosion Properties and the Anti-Tumor Activity of Magnesium Alloyed with Silver
Abstract
<jats:p>The effect of equal-channel angular pressing (ECAP) on the microstructure, texture, mechanical properties, corrosion resistance and cytotoxicity of two magnesium-silver alloys, Mg-2.0%Ag and Mg-4.0%Ag, was studied. Their average grain size was found to be reduced to 3.2 ± 1.4 μm and 2.8 ± 1.3 μm, respectively. Despite the substantial grain refinement, a drop in the strength characteristics of the alloys was observed, which can be attributed to the formation of inclined basal texture. On a positive side, an increase in tensile ductility to ~34% for Mg-2.0%Ag and ~27% for Mg-4.0%Ag was observed. This effect can be associated with the activity of basal and prismatic slip induced by ECAP. One of the ECAP regimes tested gave rise to a drop in the corrosion resistance of both alloys. An interesting observation was a cytotoxic effect both alloys had on tumor cells in vitro. This effect was accompanied with the release of lactate dehydrogenase, an increase in oxidative stress, coupled with the induction of NO-ions and an increase in the content of such markers of apoptosis as Annexin V and Caspase 3/7. Differences in the chemical composition and the processing history-dependent microstructure of the alloys did not have any significant effect on the magnitude of their antiproliferative effect.</jats:p>