People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Papatzani, Styliani
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2023Nanomontmorillonite Reinforced Fibre Cements and Nanomontmorillonite-Nanosilica Reinforced Mortarscitations
- 2021Effect of stacking sequence on the performance of hybrid natural/synthetic fiber reinforced polymer composite laminates
- 2020A step by step methodology for building sustainable cementitious matricescitations
- 2019Optimization of low carbon footprint quaternary and quinary (37% fly ash) cementitious nanocomposites with polycarboxylate or aqueous nanosilica particlescitations
- 2019Permeable nanomontmorillonite and fibre reinforced cementitious binderscitations
- 2019ICE Themes Low Carbon Concrete
- 2019From Nanostructural Characterization of Nanoparticles to Performance Assessment of Low Clinker Fibre-Cement Nanohybridscitations
- 2018Pore-structure and microstructural investigation of organomodified/Inorganic nano-montmorillonite cementitious nanocompositescitations
- 2018Pore-structure and microstructural investigation of organomodified/Inorganic nano- montmorillonite cementitious nanocompositescitations
- 2018Lowering cement clinker:citations
- 2018Lowering cement clinker::A thorough, performance based study on the use of nanoparticles of SiO2 or montmorillonite in Portland limestone nanocompositescitations
- 2018Polycarboxylate / nanosilica modified quaternary cement formulations - enhancements and limitationscitations
- 2017Construction, demolition and excavation waste management in EU/Greece and its potential use in concrete
- 2017Inorganic and organomodified nano-montmorillonite dispersions for use as supplementary cementitious materialscitations
- 2016Effect of nanosilica and montmorillonite nanoclay particles on cement hydration and microstructurecitations
- 2015Dispersed Inorganic or Organomodified Montmorillonite Clay Nanoparticles for Blended Portland Cement Pastescitations
- 2015Effects of nanosilica on the calcium silicate hydrates in Portland cement–fly ash systemscitations
- 2015RC structural walls under cyclic loading - Experimental verification of code overestimation of transverse reinforcement reduction potentials
- 2015A comprehensive review of the models on the nanostructure of calcium silicate hydratescitations
- 2014The effect of the addition of nanoparticles of silica on the strength and microstructure of blended Portland cement pastes
- 2014Прочность и микроструктура цементного камня c добавками коллоидного SiO2
Places of action
Organizations | Location | People |
---|
article
Permeable nanomontmorillonite and fibre reinforced cementitious binders
Abstract
Clinker reduction in cementitious binders is of paramount importance today, and nanotechnology has extended permissible limits. In the present study, a reference binder consisting of 60% Portland cement, 20% limestone, 20% fly ash, 3% polyvinyl alcohol (PVA) fibres and 2% superplasticizer is optimized with three different types of nano-montmorillonite (nMt) dispersions; two organomodified ones and an inorganic one at different proportions (0.5% to 4%). Flexural strength, measured on day 7, 28, 56 and 90, was improved after day 28 with the addition of inorganic nMt. Thermal gravimetric analyses carried out on day 7, 28, 56 and 90 coupled with x-ray diffraction (at day 28) showed a distinctively enhanced pozzolanic reaction. Backscattered electron imaging confirmed changes in the microstructure. Late age relative density measurements of the nMt cementitious nanocomposites showed higher values than these of the reference paste, which can be attributed to better particle packing. Mercury intrusion porosimetry measurements give support to the optimal nMt dosage, being 1% by total mass of binder and water impermeability tests (modified with BS EN 492:2012) suggest that inorganic nMt can be a viable option material where permeability constitutes a prerequisite. Suggestions for further activation of the nMt-fibre reinforced cementitious nanocomposites were also made.