People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Cnudde, Veerle
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (39/39 displayed)
- 2023Assessment of pore structure characteristics and tortuosity of 3D printed concrete using mercury intrusion porosimetry and X-ray tomographycitations
- 2023Assessment of pore structure characteristics and tortuosity of 3D printed concrete using mercury intrusion porosimetry and X-ray tomographycitations
- 2023Assessment of pore structure characteristics and tortuosity of 3D printed concrete using mercury intrusion porosimetry and X-ray tomography
- 2023An automated wireless system for monitoring concrete structures based on embedded electrical resistivity sensors : data transmission and effects on concrete propertiescitations
- 2022Transport properties of 3D printed cementitious materials with prolonged time gap between successive layerscitations
- 2022Transport properties of 3D printed cementitious materials with prolonged time gap between successive layerscitations
- 2021Manual application versus autonomous release of water repellent agent to prevent reinforcement corrosion in cracked concretecitations
- 2021Manual application versus autonomous release of water repellent agent to prevent reinforcement corrosion in cracked concrete
- 2021Anisotropic small-strain stiffness of calcareous sand affected by sample preparation, particle characteristic and gradationcitations
- 2021Kinematic and mechanical response of dry woven fabrics in through-thickness compression: Virtual fiber modeling with mesh overlay technique and experimental validationcitations
- 2020X-Ray Micro Tomography of Water Absorption by Superabsorbent Polymers in Mortarcitations
- 2020Event-based contact angle measurements inside porous media using time-resolved micro-computed tomographycitations
- 2019Multiscale characterization of glass wools using X-ray micro-CTcitations
- 2019Microstructural characterization of 3D printed cementitious materialscitations
- 2019Microstructural characterization of 3D printed cementitious materialscitations
- 2019Investigation of the effect of specific interfacial area on strength of unsaturated granular materials by X-ray tomographycitations
- 2019Investigation of the effect of specific interfacial area on strength of unsaturated granular materials by X-ray tomographycitations
- 2019The impact of post depositional alterations on the preservation of microwear traces
- 2018Effect of Polyurethane Viscosity on Self-Healing Efficiency of Cementitious Materials Exposed to High Temperatures from Sun Radiationcitations
- 2018Effect of Polyurethane Viscosity on Self-Healing Efficiency of Cementitious Materials Exposed to High Temperatures from Sun Radiationcitations
- 2018Poly(methyl methacrylate) capsules as an alternative to the ‘’proof-of-concept’’ glass capsules used in self-healing concrete
- 2018Poly(methyl methacrylate) capsules as an alternative to the ‘’proof-of-concept’’ glass capsules used in self-healing concretecitations
- 2018Methane bubble growth and migration in aquatic sediments observed by X-ray mu CTcitations
- 2016Capillary water absorption in cracked and uncracked mortar - A comparison between experimental study and finite element analysiscitations
- 2016The microstructure of capsule containing self-healing materials: A micro-computed tomography studycitations
- 2016X-ray computed microtomography to study autogenous healing of cementitious materials promoted by superabsorbent polymerscitations
- 2016Experimental study of the ageing of building stones exposed to sulfurous and nitric acid atmospheres
- 2015Autogenous healing of cementitious materials promoted by superabsorbent polymers studied by means of X-ray computed microtomography
- 2013Compatibility assessment for repair mortars
- 2012X-ray microtomography (mu-CT) to evaluate microstructure of mortars containing low density additionscitations
- 2010X-ray tomography to visualise concrete degradation and (self)-healing
- 2009Porosity and microstructure characterization of building stones and concretes
- 2009Development of injection moulded matrix tablets based on mixtures of ethylcellulose and low-substituted hydroxypropylcellulose
- 2009Multi-resolution X-ray CT research applied on geomaterials
- 2008X-ray computed microtomography on cementitious materials
- 2008Comparison of different nano- and micro-focus X-ray computed tomography set-ups for the visualization of the soil microstructure and soil organic matter
- 2007Strain monitoring in thermoplastic composites with optical fiber sensors: embedding process, visualization with micro-tomography, and fatigue results
- 2006Detection and distribution analysis of organosilicon compounds in wood by means of SEM-EDX and micro-CTcitations
- 2005A sensitivity study for the visualisation of bacterial weathering of concrete and stone with computerised X-ray microtomographycitations
Places of action
Organizations | Location | People |
---|
article
Microstructural characterization of 3D printed cementitious materials
Abstract
Three-dimensional concrete printing (3DCP) has progressed rapidly in recent years. With the aim to realize both buildings and civil works without using any molding, not only has the need for reliable mechanical properties of printed concrete grown, but also the need for more durable and environmentally friendly materials. As a consequence of super positioning cementitious layers, voids are created which can negatively affect durability. This paper presents the results of an experimental study on the relationship between 3DCP process parameters and the formed microstructure. The effect of two different process parameters (printing speed and inter-layer time) on the microstructure was established for fresh and hardened states, and the results were correlated with mechanical performance. In the case of a higher printing speed, a lower surface roughness was created due to the higher kinetic energy of the sand particles and the higher force applied. Microstructural investigations revealed that the amount of unhydrated cement particles was higher in the case of a lower inter-layer interval (i.e., 10 min). This phenomenon could be related to the higher water demand of the printed layer in order to rebuild the early Calcium-Silicate-Hydrate (CSH) bridges and the lower amount of water available for further hydration. The number of pores and the pore distribution were also more pronounced in the case of lower time intervals. Increasing the inter-layer time interval or the printing speed both lowered the mechanical performance of the printed specimens. This study emphasizes that individual process parameters will affect not only the structural behavior of the material, but they will also affect the durability and consequently the resistance against aggressive chemical substances.