People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zadpoor, Amir, A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (38/38 displayed)
- 2024Curvature tuning through defect-based 4D printingcitations
- 2024On-Demand Magnetically-Activated Drug Delivery from Additively Manufactured Porous Bone Implants to Tackle Antibiotic-Resistant Infectionscitations
- 2024Biodegradation-affected fatigue behavior of extrusion-based additively manufactured porous iron–manganese scaffoldscitations
- 2024Bone cell response to additively manufactured 3D micro-architectures with controlled Poisson's ratiocitations
- 20244D Printing for Biomedical Applicationscitations
- 2023Biomechanical evaluation of additively manufactured patient-specific mandibular cage implants designed with a semi-automated workflowcitations
- 2023Auxeticity as a Mechanobiological Tool to Create Meta-Biomaterialscitations
- 2023Extrusion-based 3D printing of biodegradable, osteogenic, paramagnetic, and porous FeMn-akermanite bone substitutescitations
- 2023Quality of AM implants in biomedical applicationcitations
- 2022Mechanisms of fatigue crack initiation and propagation in auxetic meta-biomaterialscitations
- 2022Extrusion-based additive manufacturing of Mg-Zn alloy scaffoldscitations
- 2022Merging strut-based and minimal surface meta-biomaterialscitations
- 2022Nonlinear coarse-graining models for 3D printed multi-material biomimetic compositescitations
- 2022Additive manufacturing of bioactive and biodegradable porous iron-akermanite composites for bone regenerationcitations
- 2022Poly(2-ethyl-2-oxazoline) coating of additively manufactured biodegradable porous ironcitations
- 2022Additive Manufacturing of Biomaterialscitations
- 2021Fatigue performance of auxetic meta-biomaterialscitations
- 2021Extrusion-based 3D printing of ex situ-alloyed highly biodegradable MRI-friendly porous iron-manganese scaffoldscitations
- 20214D printing of reconfigurable metamaterials and devices
- 2021Dynamic characterization of 3D printed mechanical metamaterials with tunable elastic propertiescitations
- 2021Extrusion-based 3D printed biodegradable porous ironcitations
- 2021Biocompatibility and Absorption Behavior in Vitro of Direct Printed Porous Iron Porous Implants
- 2021Mechanical characterization of nanopillars by atomic force microscopycitations
- 2021Lattice structures made by laser powder bed fusioncitations
- 2020Additively manufactured biodegradable porous zinccitations
- 2020Multi-material additive manufacturing technologies for Ti-, Mg-, and Fe-based biomaterials for bone substitutioncitations
- 2020Mechanics of bioinspired functionally graded soft-hard composites made by multi-material 3D printingcitations
- 2019Auxeticity and stiffness of random networkscitations
- 2019Additive manufacturing of Ti–6Al–4V parts through laser metal deposition (LMD)citations
- 2019Additively manufactured functionally graded biodegradable porous ironcitations
- 2019Additive manufacturing of metals using powder bed-based technologies
- 2019Fracture Behavior of Bio-Inspired Functionally Graded Soft–Hard Composites Made by Multi-Material 3D Printingcitations
- 2019A review of the fatigue behavior of 3D printed polymerscitations
- 2019Biodegradation-affected fatigue behavior of additively manufactured porous magnesiumcitations
- 2018Multi-material 3D printed mechanical metamaterialscitations
- 2018Additively manufactured biodegradable porous ironcitations
- 2017Rational design of soft mechanical metamaterialscitations
- 2017Additively manufactured biodegradable porous magnesiumcitations
Places of action
Organizations | Location | People |
---|
article
Fracture Behavior of Bio-Inspired Functionally Graded Soft–Hard Composites Made by Multi-Material 3D Printing
Abstract
The functional gradient is a concept often occurring in nature. This concept can be implemented in the design and fabrication of advanced materials with specific functionalities and properties. Functionally graded materials (FGMs) can effectively eliminate the interface problems in extremely hard–soft connections, and, thus, have numerous and diverse applications in high-tech industries, such as those in biomedical and aerospace fields. Here, using voxel-based multi-material additive manufacturing (AM, = 3D printing) techniques, which works on the basis of material jetting, we studied the fracture behavior of functionally graded soft–hard composites with a pre-existing crack colinear with the gradient direction. We designed, additively manufactured, and mechanically tested the two main types of functionally graded composites, namely, composites with step-wise and continuous gradients. In addition, we changed the length of the transition zone between the hard and soft materials such that it covered 5%, 25%, 50%, or 100% of the width (W) of the specimens. The results showed that except for the fracture strain, the fracture properties of the graded specimens decreased as the length of the transition zone increased. Additionally, it was found that specimens with abrupt hard–soft transitions have significantly better fracture properties than those with continuous gradients. Among the composites with gradients, those with step-wise gradients showed a slightly better fracture resistance compared to those with continuous gradients. In contrast, FGMs with continuous gradients showed higher values of elastic stiffness and fracture energy, which makes each gradient function suitable for different loading scenarios. Moreover, regardless of the gradient function used in the design of the specimens, decreasing the length of the transition zone from 100%W to 5%W increased the fracture resistance of FGMs. We discuss the important underlying fracture mechanisms using data collected from digital image correlation (DIC), digital image microscopy, and scanning electron microscopy (SEM), which were used to analyze the fracture surface.