Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Castro, Moara

  • Google
  • 3
  • 12
  • 34

Slovak Academy of Sciences

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2019Developing magnesium-based composites through high-pressure torsion8citations
  • 2019Magnesium-Based Bioactive Composites Processed at Room Temperature15citations
  • 2018Consolidation of Magnesium and Magnesium Alloy Machine Chips Using High-Pressure Torsion11citations

Places of action

Chart of shared publication
Langdon, Terence
1 / 3 shared
Pereira, Pedro Henrique
1 / 1 shared
Figueiredo, Roberto
1 / 3 shared
Nunes, Eduardo H. M.
1 / 2 shared
Lopes, Debora R.
1 / 2 shared
Santos, Diogo M. M. Dos
1 / 1 shared
Lins, Vanessa F. C.
1 / 6 shared
Langdon, Terence G.
1 / 178 shared
Isaac, Augusta
1 / 1 shared
Soares, Renata B.
1 / 4 shared
Figueiredo, Roberto B.
1 / 22 shared
Pereira, Pedro Henrique R.
1 / 14 shared
Chart of publication period
2019
2018

Co-Authors (by relevance)

  • Langdon, Terence
  • Pereira, Pedro Henrique
  • Figueiredo, Roberto
  • Nunes, Eduardo H. M.
  • Lopes, Debora R.
  • Santos, Diogo M. M. Dos
  • Lins, Vanessa F. C.
  • Langdon, Terence G.
  • Isaac, Augusta
  • Soares, Renata B.
  • Figueiredo, Roberto B.
  • Pereira, Pedro Henrique R.
OrganizationsLocationPeople

article

Magnesium-Based Bioactive Composites Processed at Room Temperature

  • Nunes, Eduardo H. M.
  • Lopes, Debora R.
  • Santos, Diogo M. M. Dos
  • Castro, Moara
  • Lins, Vanessa F. C.
  • Langdon, Terence G.
  • Isaac, Augusta
  • Soares, Renata B.
  • Figueiredo, Roberto B.
  • Pereira, Pedro Henrique R.
Abstract

<jats:p>Hydroxyapatite and bioactive glass particles were added to pure magnesium and an AZ91 magnesium alloy and then consolidated into disc-shaped samples at room temperature using high-pressure torsion (HPT). The bioactive particles appeared well-dispersed in the metal matrix after multiple turns of HPT. Full consolidation was attained using pure magnesium, but the center of the AZ91 disc failed to fully consolidate even after 50 turns. The magnesium-hydroxyapatite composite displayed an ultimate tensile strength above 150 MPa, high cell viability, and a decreasing rate of corrosion during immersion in Hank’s solution. The composites produced with bioactive glass particles exhibited the formation of calcium phosphate after 2 h of immersion in Hank’s solution and there was rapid corrosion in these materials.</jats:p>

Topics
  • corrosion
  • Magnesium
  • magnesium alloy
  • Magnesium
  • glass
  • glass
  • strength
  • composite
  • tensile strength
  • Calcium