People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zehetbauer, Michael J.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Effect of V content on the microstructure and mechanical properties of HPT nanostructured CoCrFeMnNiV x high entropy alloys
- 2023Can Severe Plastic Deformation Tune Nanocrystallization in Fe-Based Metallic Glasses?citations
- 2021Enhancing the Mechanical Properties of Biodegradable Mg Alloys Processed by Warm HPT and Thermal Treatmentscitations
- 2020The effects of severe plastic deformation and/or thermal treatment on the mechanical properties of biodegradable mg-alloyscitations
- 2020Anomalous Evolution of Strength and Microstructure of High-Entropy Alloy CoCrFeNiMn after High-Pressure Torsion at 300 and 77 Kcitations
- 2019Exceptional Strengthening of Biodegradable Mg-Zn-Ca Alloys through High Pressure Torsion and Subsequent Heat Treatmentcitations
- 2019Characterization of strain bursts in high density polyethylene by means of a novel nano creep testcitations
- 2016Producing bulk ultrafine-grained materials by severe plastic deformation: ten years latercitations
Places of action
Organizations | Location | People |
---|
article
Exceptional Strengthening of Biodegradable Mg-Zn-Ca Alloys through High Pressure Torsion and Subsequent Heat Treatment
Abstract
In this study, two biodegradable Mg-Zn-Ca alloys with alloy content of less than 1 wt % were strengthened via high pressure torsion (HPT). A subsequent heat treatment at temperatures of around 0.45 Tm led to an additional, sometimes even larger increase in both hardness and tensile strength. A hardness of more than 110 HV and tensile strength of more than 300 MPa were achieved in Mg-0.2Zn-0.5Ca by this procedure. Microstructural analyses were conducted by scanning and transmission electron microscopy (SEM and TEM, respectively) and atom probe tomography (APT) to reveal the origin of this strength increase. They indicated a grain size in the sub-micron range, Ca-rich precipitates, and segregation of the alloying elements at the grain boundaries after HPT-processing. While the grain size and segregation remained mostly unchanged during the heat treatment, the size and density of the precipitates increased slightly. However, estimates with an Orowan-type equation showed that precipitation hardening cannot account for the strength increase observed. Instead, the high concentration of vacancies after HPT-processing is thought to lead to the formation of vacancy agglomerates and dislocation loops in the basal plane, where they represent particularly strong obstacles to dislocation movement, thus, accounting for the considerable strength increase observed. This idea is substantiated by theoretical considerations and quenching experiments, which also show an increase in hardness when the same heat treatment is applied.