People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bockowski, Michal
Institute of High Pressure Physics
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Explaining an anomalous pressure dependence of shear modulus in germanate glasses based on Reverse Monte Carlo modelling
- 2024Explaining an anomalous pressure dependence of shear modulus in germanate glasses based on Reverse Monte Carlo modelling
- 2024History matters for glass structure and mechanical properties
- 2023Evolution of the Growth Mode and Its Consequences during Bulk Crystallization of GaNcitations
- 2022Novel High-Pressure Nanocomposites for Cathode Materials in Sodium Batteriescitations
- 2022Thermal conduction in a densified oxide glasscitations
- 2022Thermal conduction in a densified oxide glass:Insights from lattice dynamicscitations
- 2021Vibrational disorder and densification-induced homogenization of local elasticity in silicate glassescitations
- 2021Thermal conductivity of densified borosilicate glassescitations
- 2021Indentation Response of Calcium Aluminoborosilicate Glasses Subjected to Humid Aging and Hot Compressioncitations
- 2021Volume relaxation in a borosilicate glass hot compressed by three different methodscitations
- 2020Composition and pressure effects on the structure, elastic properties and hardness of aluminoborosilicate glasscitations
- 2020Achieving ultrahigh crack resistance in glass through humid agingcitations
- 2020Volume relaxation in a borosilicate glass hot compressed by three different methodscitations
- 2019Luminescence behaviour of Eu 3+ in hot-compressed silicate glassescitations
- 2019Revisiting the Dependence of Poisson’s Ratio on Liquid Fragility and Atomic Packing Density in Oxide Glassescitations
- 2019(Invited) Advances in Ion Implantation of GaN and AlN
- 2018Deformation and cracking behavior of La2O3-doped oxide glasses with high Poisson's ratiocitations
- 2017Thermal Conductivity of Foam Glasses Prepared using High Pressure Sintering
- 2017Foaming Glass Using High Pressure Sintering
- 2016Structure and mechanical properties of compressed sodium aluminosilicate glassescitations
- 2014Pressure-Induced Changes in Inter-Diffusivity and Compressive Stress in Chemically Strengthened Glass
Places of action
Organizations | Location | People |
---|
article
Revisiting the Dependence of Poisson’s Ratio on Liquid Fragility and Atomic Packing Density in Oxide Glasses
Abstract
Poisson's ratio (υ) defines a material's propensity to laterally expand upon compression, or laterally shrink upon tension for non-auxetic materials. This fundamental metric has traditionally, in some fields, been assumed to be a material-independent constant, but it is clear that it varies with composition across glasses, ceramics, metals, and polymers. The intrinsically elastic metric has also been suggested to control a range of properties, even beyond the linear-elastic regime. Notably, metallic glasses show a striking brittle-to-ductile (BTD) transition for υ-values above ~0.32. The BTD transition has also been suggested to be valid for oxide glasses, but, unfortunately, direct prediction of Poisson's ratio from chemical composition remains challenging. With the long-term goal to discover such high-υ oxide glasses, we here revisit whether previously proposed relationships between Poisson's ratio and liquid fragility (m) and atomic packing density (C g ) hold for oxide glasses, since this would enable m and C g to be used as surrogates for υ. To do so, we have performed an extensive literature review and synthesized new oxide glasses within the zinc borate and aluminoborate families that are found to exhibit high Poisson's ratio values up to ~0.34. We are not able to unequivocally confirm the universality of the Novikov-Sokolov correlation between υ and m and that between υ and C g for oxide glass-formers, nor for the organic, ionic, chalcogenide, halogenide, or metallic glasses. Despite significant scatter, we do, however, observe an overall increase in υ with increasing m and C g , but it is clear that additional structural details besides m or C g are needed to predict and understand the composition dependence of Poisson's ratio. Finally, we also infer from literature data that, in addition to high υ, high Young's modulus is also needed to obtain glasses with high fracture toughness.