Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Foster, Geoffrey

  • Google
  • 3
  • 18
  • 20

Scotland's Rural College

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2022First isolation of Arcanobacterium pinnipediorum from a grey seal pup (Halichoerus grypus) in the UK1citations
  • 2019Native Point Defect Measurement and Manipulation in ZnO Nanostructures19citations
  • 2019Native Point Defect Measurement and Manipulation in ZnO Nanostructurescitations

Places of action

Chart of shared publication
Robinson, Mathew
1 / 1 shared
Alssahen, Mazen
1 / 2 shared
Eisenberg, Tobias
1 / 1 shared
Rau, Jörg
1 / 1 shared
Hassan, Abdulwahed Ahmed
1 / 1 shared
Lämmler, Christoph
1 / 1 shared
Abdulmawjood, Amir
1 / 2 shared
Prenger-Berninghoff, Ellen
1 / 1 shared
Look, David
2 / 3 shared
Jarjour, Alexander
2 / 2 shared
Cox, Jonathan
2 / 2 shared
Gao, Hantian
2 / 2 shared
Grundmann, Marius
2 / 32 shared
Ruane, William
2 / 2 shared
Wenckstern, Holger Von
1 / 4 shared
Allen, Martin
1 / 1 shared
Brillson, Leonard
1 / 1 shared
Von Wenckstern, Holger
1 / 17 shared
Chart of publication period
2022
2019

Co-Authors (by relevance)

  • Robinson, Mathew
  • Alssahen, Mazen
  • Eisenberg, Tobias
  • Rau, Jörg
  • Hassan, Abdulwahed Ahmed
  • Lämmler, Christoph
  • Abdulmawjood, Amir
  • Prenger-Berninghoff, Ellen
  • Look, David
  • Jarjour, Alexander
  • Cox, Jonathan
  • Gao, Hantian
  • Grundmann, Marius
  • Ruane, William
  • Wenckstern, Holger Von
  • Allen, Martin
  • Brillson, Leonard
  • Von Wenckstern, Holger
OrganizationsLocationPeople

article

Native Point Defect Measurement and Manipulation in ZnO Nanostructures

  • Foster, Geoffrey
  • Look, David
  • Jarjour, Alexander
  • Cox, Jonathan
  • Gao, Hantian
  • Grundmann, Marius
  • Ruane, William
  • Wenckstern, Holger Von
Abstract

<jats:p>This review presents recent research advances in measuring native point defects in ZnO nanostructures, establishing how these defects affect nanoscale electronic properties, and developing new techniques to manipulate these defects to control nano- and micro- wire electronic properties. From spatially-resolved cathodoluminescence spectroscopy, we now know that electrically-active native point defects are present inside, as well as at the surfaces of, ZnO and other semiconductor nanostructures. These defects within nanowires and at their metal interfaces can dominate electrical contact properties, yet they are sensitive to manipulation by chemical interactions, energy beams, as well as applied electrical fields. Non-uniform defect distributions are common among semiconductors, and their effects are magnified in semiconductor nanostructures so that their electronic effects are significant. The ability to measure native point defects directly on a nanoscale and manipulate their spatial distributions by multiple techniques presents exciting possibilities for future ZnO nanoscale electronics.</jats:p>

Topics
  • surface
  • semiconductor
  • wire
  • point defect
  • spectroscopy