People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Cochez, Marianne
Université de Lorraine
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2020Assessment of the protective effect of PMMA on water immersion ageing of flame retarded PLA/PMMA blendscitations
- 2020Calcium carbonate and ammonium polyphosphate flame retardant additives formulated to protect ethylene vinyl acetate copolymer against fire: Hydrated or carbonated calcium?citations
- 2019Thermal Stability and Flammability Behavior of Poly(3-hydroxybutyrate) (PHB) Based Compositescitations
- 2017Continuous-fiber-reinforced thermoplastic composites: influence of processing on fire retardant propertiescitations
- 2016Influence of modified mesoporous silica SBA-15 on the flammability of intumescent high-density polyethylenecitations
- 2016Investigation of thermal stability and flammability of poly(methyl methacrylate) composites by combination of APP with ZrO2, sepiolite or MMTcitations
- 2011Synergistic effect between hydrophobic oxide nanoparticles and ammonium polyphosphate on fire properties of poly(methyl methacrylate) and polystyrenecitations
- 2011Impact of modified alumina oxides on the fire properties of PMMA and PS nanocompositescitations
- 2010Tentative links between thermal diffusivity and fire-retardant properties in poly(methyl methacrylate)–metal oxide nanocompositescitations
- 2010Tentative links between thermal diffusivity and fire-retardant properties in poly(methyl methacrylate)emetal oxide nanocompositescitations
- 2008Influence of the surface modification of alumina nanoparticles on the thermal stability and fire reaction of PMMA compositescitations
- 2008The catalytic role of oxide in the thermooxidative degradation of poly(methyl methacrylate)–TiO2 nanocomposites
- 2003Characterization of iron substitution process in Fe:LiNbO3 single crystal fibers by polaron measurements
Places of action
Organizations | Location | People |
---|
article
Thermal Stability and Flammability Behavior of Poly(3-hydroxybutyrate) (PHB) Based Composites
Abstract
International audience ; A series of samples based on poly(3-hydroxybutyrate) (PHB) containing five different additives were prepared and their thermal stability and flammability were discussed. The samples were first underwent flammability screening of by using Pyrolysis Combustion Flow Calorimeter (PCFC) analyses. Then, four samples were selected for further investigations. PHB composites containing sepiolite (Sep.) inorganic nanofiller, and also organic ammonium polyphosphate (APP) were examined for flammability and thermal behavior using PCFC, thermogravimetric analysis (TGA), flame test, and Differential Scanning Calorimetry (DSC) analyses. Moreover, burning behavior of samples were captured on a digital camera to give a deeper sense of their flammability character for comparison. The results revealed a significant improvement of flammability and thermal stability of composites, particularly in the presence of sepiolite with respect to the value obtained for unfilled PHB. Regarding TGA results, the char residue yield was increased to ca. 20.0 wt.% in the presence of sepiolite, while 0.0 wt.% was observed for PHB. PCFC measurements uncovered higher performance of PHB-Sep. sample as signaled by 40% reduction in the peak of heat release rate with respect to PHB. According to observations, PHB-Sep. sample showed non-dripping behavior with high capacity of charring in the presence of Sep. in vertical flame test.