People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Saeb, Mohammad Reza
Gdańsk Medical University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (33/33 displayed)
- 2024Tailoring van der Waals interactions in ultra-thin two dimensional metal–organic frameworks (MOFs) for photoconductive applications
- 2024Fluorinated‐polyhedral oligomeric silsesquioxane (F‐POSS) functionalized halloysite nanotubes (HNTs) as an antifouling additive for epoxy resincitations
- 2024Hydrogel and aerogel‐based flame‐retardant polymeric materials: A reviewcitations
- 2023Polysaccharide-based C-dots and Polysacchride/C-dot Nanocomposites: Fabrications and Applicationscitations
- 2023New Transparent Flame-Retardant (FR) Coatings Based on Epoxy-Aluminum Hypophosphite Nanocompositescitations
- 2023New Transparent Flame-Retardant (FR) Coatings Based on Epoxy-Aluminum Hypophosphite Nanocomposites ; Nouveaux revêtements transparents ignifugés (FR) à base de nanocomposites époxy-aluminium hypophosphitecitations
- 2023Toward Olefin Multiblock Copolymers with Tailored Properties: A Molecular Perspectivecitations
- 2022Cure kinetics of samarium-doped Fe3O4/epoxy nanocompositescitations
- 2022GTR/Thermoplastics Blends: How Do Interfacial Interactions Govern Processing and Physico-Mechanical Properties?citations
- 2022Application of g-C 3 N 4 /ZnO nanocomposites for fabrication of anti-fouling polymer membranes with dye and protein rejection superiority
- 2021Amine‐functionalized metal–organic frameworks/epoxy nanocomposites: Structure‐properties relationshipscitations
- 2021Green carbon-based nanocomposite biomaterials through the lens of microscopescitations
- 2021Electrospinning for developing flame retardant polymer materials: current status and future perspectivescitations
- 2021Corrigendum to “Nonisothermal cure kinetics of epoxy/MnxFe3-xO4 nanocomposites” [Prog. Org. Coat. 140C (2020) 105505]
- 2021Polymer nanocomposites from the flame retardancy viewpoint: A comprehensive classification of nanoparticle performance using the flame retardancy indexcitations
- 2021Correlating the Photophysical Properties with the Cure Index of Epoxy Nanocomposite Coatingscitations
- 2021Toward Olefin Multiblock Copolymers with Tailored Properties: A Molecular Perspectivecitations
- 2020Halloysite nanotubes (HNTs)/polymer nanocomposites: thermal degradation and flame retardancycitations
- 2020Nanocomposite biomaterials made by 3D printingcitations
- 2020Calcium carbonate and ammonium polyphosphate flame retardant additives formulated to protect ethylene vinyl acetate copolymer against fire: Hydrated or carbonated calcium?citations
- 2019Biodegradable polyester thin films and coatings in the line of fire: the time of polyhydroxyalkanoate (PHA)?citations
- 2019The Taste of Waste: The Edge of Eggshell Over Calcium Carbonate in Acrylonitrile Butadiene Rubber
- 2019Intelligent Machine Learning: Tailor-Making Macromoleculescitations
- 2019Thermal Stability and Flammability Behavior of Poly(3-hydroxybutyrate) (PHB) Based Compositescitations
- 2019Surface chemistry of halloysite nanotubes controls the curability of low filled epoxy nanocompositescitations
- 2018Intelligent Monte Carlo: A New Paradigm for Inverse Polymerization Engineeringcitations
- 2018Flame retardant epoxy/halloysite nanotubes nanocomposite coatings: Exploring low-concentration threshold for flammability compared to expandable graphite as superior fire retardantcitations
- 2018An attempt to mechanistically explain the viscoelastic behavior of transparent epoxy/starch-modified ZnO nanocomposite coatingscitations
- 2018Acid-aided epoxy-amine curing reaction as reflected in epoxy/Fe3O4 nanocomposites: Chemistry, mechanism, and fracture behaviorcitations
- 2018Hyperbranched poly(ethyleneimine) physically attached to silica nanoparticles to facilitate curing of epoxy nanocomposite coatingscitations
- 2017High-performance hybrid coatings based on diamond-like carbon and copper for carbon steel protectioncitations
- 2017Transparent nanocomposite coatings based on epoxy and layered double hydroxide: Nonisothermal cure kinetics and viscoelastic behavior assessmentscitations
- 2017Novel nanocomposites based on poly(ethylene- co -vinyl acetate) for coating applications: The complementary actions of hydroxyapatite, MWCNTs and ammonium polyphosphate on flame retardancycitations
Places of action
Organizations | Location | People |
---|
article
Thermal Stability and Flammability Behavior of Poly(3-hydroxybutyrate) (PHB) Based Composites
Abstract
International audience ; A series of samples based on poly(3-hydroxybutyrate) (PHB) containing five different additives were prepared and their thermal stability and flammability were discussed. The samples were first underwent flammability screening of by using Pyrolysis Combustion Flow Calorimeter (PCFC) analyses. Then, four samples were selected for further investigations. PHB composites containing sepiolite (Sep.) inorganic nanofiller, and also organic ammonium polyphosphate (APP) were examined for flammability and thermal behavior using PCFC, thermogravimetric analysis (TGA), flame test, and Differential Scanning Calorimetry (DSC) analyses. Moreover, burning behavior of samples were captured on a digital camera to give a deeper sense of their flammability character for comparison. The results revealed a significant improvement of flammability and thermal stability of composites, particularly in the presence of sepiolite with respect to the value obtained for unfilled PHB. Regarding TGA results, the char residue yield was increased to ca. 20.0 wt.% in the presence of sepiolite, while 0.0 wt.% was observed for PHB. PCFC measurements uncovered higher performance of PHB-Sep. sample as signaled by 40% reduction in the peak of heat release rate with respect to PHB. According to observations, PHB-Sep. sample showed non-dripping behavior with high capacity of charring in the presence of Sep. in vertical flame test.