Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kubiak, Krzysztof

  • Google
  • 2
  • 2
  • 164

Rzeszów University of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2019Application of Inner Radiation Baffles in the Bridgman Process for Flattening the Temperature Profile and Controlling the Columnar Grain Structure of Directionally Solidified Ni-Based Superalloys12citations
  • 2014How to select the most relevant 3D roughness parameters of a surface152citations

Places of action

Chart of shared publication
Deltombe, Raphaël
1 / 3 shared
Bigerelle, Maxence
1 / 23 shared
Chart of publication period
2019
2014

Co-Authors (by relevance)

  • Deltombe, Raphaël
  • Bigerelle, Maxence
OrganizationsLocationPeople

article

Application of Inner Radiation Baffles in the Bridgman Process for Flattening the Temperature Profile and Controlling the Columnar Grain Structure of Directionally Solidified Ni-Based Superalloys

  • Kubiak, Krzysztof
Abstract

<jats:p>The technique of flattening the temperature profile and controlling the formation of both the dendritic microstructure and grain structure in the directional solidification of nickel-based superalloy casting, using the novel inner radiation baffles (IRBs) in the Bridgman process, is presented in this paper. These baffles matched to the shape of mold and were placed horizontally along its height at various distances from the casting base. The plate castings of CMSX-4 superalloy were fabricated without and with the use of IRBs, withdrawing the mold at the rate of 6 mm/min from the heating to the cooling area of the industrial Bridgman furnace. Thermal analysis of the directional solidification of castings was carried out using the ProCAST software for a process where the various designs of the radiation baffle were applied. The results of the solidification conditions, the shape of liquidus and solidus isotherms, and grain structure obtained for the IRBs were compared with those reached for the standard ring-shaped (AERB) or perfectly adjusted (PARB) radiation baffles. The use of IRB resulted in flattening of the temperature distribution and decrease of the curvature of liquidus and solidus isotherms, as well as an increase of temperature gradient and cooling rate, compared with the process where AERB was only used. Consequently, primary dendrite arm spacing (PDAS) reached similar values across the width of casting and equaled to approximately 370 μm, reducing its average value by 26%, compared with the standard process. The change in predicted axial temperature gradient in casting was not found when thermophysical properties of molybdenum IRBs were used. The increase in graphite IRBs number in mold from seven to 14 caused the reduction of inhomogeneity of axial temperature gradient along the casting height.</jats:p>

Topics
  • impedance spectroscopy
  • molybdenum
  • grain
  • nickel
  • thermal analysis
  • casting
  • superalloy
  • dendritic microstructure
  • directional solidification