Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Almyras, G. A.

  • Google
  • 2
  • 7
  • 47

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2019Semi-empirical force-field model for the Ti 1-x Al x N (0 ≤ x ≤ 1) system28citations
  • 2011Atomic cluster arrangements in Reverse Monte Carlo and Molecular Dynamics structural models of binary Cu-Zr Metallic Glasses19citations

Places of action

Chart of shared publication
Sangiovanni, D. G.
1 / 3 shared
Sarakinos, Kostas
1 / 37 shared
Evangelakis, G. A.
1 / 4 shared
Mattern, N.
1 / 139 shared
Lekka, C. E.
1 / 4 shared
Eckert, Jürgen
1 / 1035 shared
Papageorgiou, D. G.
1 / 6 shared
Chart of publication period
2019
2011

Co-Authors (by relevance)

  • Sangiovanni, D. G.
  • Sarakinos, Kostas
  • Evangelakis, G. A.
  • Mattern, N.
  • Lekka, C. E.
  • Eckert, Jürgen
  • Papageorgiou, D. G.
OrganizationsLocationPeople

article

Semi-empirical force-field model for the Ti 1-x Al x N (0 ≤ x ≤ 1) system

  • Sangiovanni, D. G.
  • Sarakinos, Kostas
  • Almyras, G. A.
Abstract

<p>We present a modified embedded atom method (MEAM) semi-empirical force-field model for the Ti<sub>1-x</sub>Al<sub>x</sub>N (0 ≤ x ≤ 1) alloy system. The MEAM parameters, determined via an adaptive simulated-annealing (ASA) minimization scheme, optimize the model's predictions with respect to 0 K equilibrium volumes, elastic constants, cohesive energies, enthalpies of mixing, and point-defect formation energies, for a set of ≈40 elemental, binary, and ternary Ti-Al-N structures and configurations. Subsequently, the reliability of the model is thoroughly verified against known finite-temperature thermodynamic and kinetic properties of key binary Ti-N and Al-N phases, as well as properties of Ti<sub>1-x</sub>Al<sub>x</sub>N (0 &lt; x &lt; 1) alloys. The successful outcome of the validation underscores the transferability of our model, opening the way for large-scale molecular dynamics simulations of, e.g., phase evolution, interfacial processes, and mechanical response in Ti-Al-N-based alloys, superlattices, and nanostructures.</p>

Topics
  • impedance spectroscopy
  • phase
  • simulation
  • molecular dynamics
  • defect
  • annealing
  • interfacial
  • phase evolution