Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hong, Sangki

  • Google
  • 1
  • 1
  • 20

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Thermal Stability and Thermoelectric Properties of NaZnSb20citations

Places of action

Chart of shared publication
Gvozdetskyi, Volodymyr
1 / 2 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Gvozdetskyi, Volodymyr
OrganizationsLocationPeople

article

Thermal Stability and Thermoelectric Properties of NaZnSb

  • Gvozdetskyi, Volodymyr
  • Hong, Sangki
Abstract

A layered Zintl antimonide NaZnSb (PbClF or Cu2Sb structure type; P4/nmm) was synthesized using the reactive sodium hydride NaH precursor. This method provides comprehensive compositional control and facilitates the fast preparation of high-purity samples in large quantities. NaZnSb is highly reactive to humidity/air and hydrolyzes to NaOH, ZnO, and Sb in aerobic conditions. On the other hand, NaZnSb is thermally stable up to 873 K in vacuum, as no structural changes were observed from high-temperature synchrotron powder X-ray diffraction data in the 300–873 K temperature range. The unit cell expansion upon heating is isotropic; however, interatomic distance elongation is not isotropic, consistent with the layered structure. Low- and high-temperature thermoelectric properties were measured on pellets densified by spark plasma sintering. The resistivity of NaZnSb ranges from 11 mΩ∙cm to 31 mΩ∙cm within the 2–676 K range, consistent with heavily doped semiconductor behavior, with a narrow band gap of 0.23 eV. NaZnSb has a large positive Seebeck coefficient (244 μV∙K−1 at 476 K), leading to the maximum of zT of 0.23 at 675 K. The measured thermoelectric properties are in good agreement with those predicted by theoretical calculations.

Topics
  • impedance spectroscopy
  • resistivity
  • reactive
  • semiconductor
  • layered
  • Sodium
  • powder X-ray diffraction
  • isotropic
  • sintering