People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Li, Tao
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2023Structural, optical, and thermal properties of BN thin films grown on diamond via pulsed laser depositioncitations
- 2023Structural, optical, and thermal properties of BN thin films grown on diamond via pulsed laser deposition
- 2022A Carboranyl Electrolyte Enabling Highly Reversible Sodium Metal Anodes via a “Fluorine‐Free” SEIcitations
- 2020Investigation of flame retarded polypropylene by high-speed planar laser-induced fluorescence of OH radicals combined with a thermal decomposition analysiscitations
- 2020Spacer-defined intrinsic multiple patterningcitations
- 2018Structure-function correlative microscopy of peritubular and intertubular dentinecitations
- 2018Transition to Superwetting for a Nanostructured Surface
- 2018Transition to Superwetting for a Nanostructured Surface
- 2018Modeling salinity effect on rice growth and rice yield with ORYZA v3 and APSIM-Oryzacitations
- 2018Mapping the transition to superwetting state for nanotextured surfaces templated from block-copolymer self-assemblycitations
- 2018Mapping the transition to superwetting state for nanotextured surfaces templated from block-copolymer self-assemblycitations
- 2018Mapping the transition to superwetting state for nanotextured surfaces templated from block-copolymer self-assemblycitations
- 2016Understanding nature’s residual strain engineering at the human dentine-enamel junction interfacecitations
- 2016Wafer-Scale Nanopillars Derived from Block Copolymer Lithography for Surface-Enhanced Raman Spectroscopycitations
- 2016Effects of coating spherical iron oxide nanoparticlescitations
- 2015Fast & scalable pattern transfer via block copolymer nanolithographycitations
- 2015Nanoporous gyroid TiO2 and SnO2 by melt infiltration of block copolymer templatescitations
- 2015Nanoporous gyroid TiO 2 and SnO 2 by melt infiltration of block copolymer templatescitations
Places of action
Organizations | Location | People |
---|
article
Structure-function correlative microscopy of peritubular and intertubular dentine
Abstract
Peritubular dentine (PTD) and intertubular dentine (ITD) were investigated by 3D correlative Focused Ion Beam (FIB)-Scanning Electron Microscopy (SEM)-Energy Dispersive Spectroscopy (EDS) tomography, tapping mode Atomic Force Microscopy (AFM) and scattering-type Scanning Near-Field Optical Microscopy (s-SNOM) mapping. The brighter appearance of PTD in 3D SEM-Backscattered-Electron (BSE) imaging mode and the corresponding higher grey value indicate a greater mineral concentration in PTD (~160) compared to ITD (~152). However, the 3D FIB-SEM-EDS reconstruction and high resolution, quantitative 2D map of the Ca/P ratio (~1.8) fail to distinguish between PTD and ITD. This has been further confirmed using nanoscale 2D AFM map, which clearly visualised biopolymers and hydroxyapatite (HAp) crystallites with larger mean crystallite size in ITD (32 ± 8 nm) than that in PTD (22 ± 3 nm). Correlative microscopy reveals that the principal difference between PTD and ITD arises primarily from the nanoscale packing density of the crystallites bonded together by thin biopolymer, with moderate contribution from the chemical composition difference. The structural difference results in the mechanical properties variation that is described by the parabolic stiffness-volume fraction correlation function introduced here. The obtained results benefit a microstructure-based mechano-chemical model to simulate the chemical etching process that can occur in human dental caries and some of its treatments.