People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Asik, Emin Erkan
Eindhoven University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024In vitro and in vivo evaluation of the osseointegration capacity of a polycarbonate-urethane zirconium-oxide composite material for application in a focal knee resurfacing implantcitations
- 2022Surface texture analysis of different focal knee resurfacing implants after 6 and 12 months in vivo in a goat modelcitations
- 2020An RVE-Based Study of the Effect of Martensite Banding on Damage Evolution in Dual Phase Steelscitations
- 2019Microscopic investigation of damage mechanisms and anisotropic evolution of damage in DP600citations
- 2019Prediction of void growth using gradient enhanced polycrystal plasticitycitations
- 2018Investigation of microstructural features on damage anisotropy
- 2018A class of rate-independent lower-order gradient plasticity theoriescitations
- 2018Investigation of anisotropic damage evolution in dual phase steels
- 2017Implementation and application of a gradient enhanced crystal plasticity modelcitations
- 2017Numerical investigation of void growth with respect to lattice orientation in bcc single crystal structure
Places of action
Organizations | Location | People |
---|
article
A class of rate-independent lower-order gradient plasticity theories
Abstract
<p>As the characteristic scale of products and production processes decreases, the plasticity phenomena observed start to deviate from those evidenced at the macroscale. The current research aims at investigating this gap using a lower-order gradient enhanced approach both using phenomenological continuum level as well as crystal plasticity models. In the phenomenological approach, a physically based hardening model relates the flow stress to the density of dislocations where it is assumed that the sources of immobile dislocations are both statistically stored (SSDs) as well as geometrically necessary dislocations (GNDs). In the crystal plasticity model, the evolution of the critical resolved shear stress is also defined based on the total number of dislocations. The GNDs are similarly incorporated in the hardening based on projecting the plastic strain gradients through the Burgers tensor on slip systems. A rate-independent formulation is considered that eliminates any artificial inhomogeneous hardening behavior due to numerical stabilization. The behavior of both models is compared in simulations focusing on the effect of structurally imposed gradients versus the inherent gradients arising in crystal plasticity simulations.</p>