People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Liu, Yang
Imperial College London
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2024Lead‐free halide perovskite materials and optoelectronic devices: progress and prospectivecitations
- 2024Characterization of AlGaAs/GeSn heterojunction band alignment via X-ray photoelectron spectroscopy
- 2023Exploring the hydride-slip interaction in zirconium alloyscitations
- 2023Demonstration of a monocrystalline GaAs-$β$-Ga$_2$O$_3$ p-n heterojunction
- 2023Lead-Free Halide Perovskite Materials and Optoelectronic Devices: Progress and Prospectivecitations
- 2023Open-source environmental data as an alternative to snail surveys to assess schistosomiasis risk in areas approaching elimination
- 2023Lead‐Free Halide Perovskite Materials and Optoelectronic Devices: Progress and Prospectivecitations
- 2022Photon Drag Currents and Terahertz Generation in α-Sn/Ge Quantum Wellscitations
- 2022Simulation of crystal plasticity in irradiated metals: a case study on Zircaloy-4citations
- 2021Characterisation of microstructural creep, strain rate and temperature sensitivity and computational crystal plasticity in Zircaloy-4citations
- 2019Quantifying the mechanical properties of polymeric tubing and scaffold using atomic force microscopy and nanoindentationcitations
- 2019Texture and phase variation of ALD PbTiO3 films crystallized by rapid thermal annealcitations
- 2019Screening Approach for the Discovery of New Hybrid Perovskites with Efficient Photoemissioncitations
- 2019Mechanical and chemical characterisation of bioresorbable polymeric stent over two-year in vitro degradationcitations
- 2018Cellular response to cyclic compression of tissue engineered intervertebral disk constructs composed of electrospun polycaprolactonecitations
- 2018Enhanced Water Barrier Properties of Surfactant-Free Polymer Films Obtained by MacroRAFT-Mediated Emulsion Polymerizationcitations
- 2017Prediction of linear and non-linear behavior of 3D woven composite using mesoscopic voxel models reconstructed from X-ray micro-tomographycitations
- 2017174 Comparison of the mechanical performance of polymeric and metallic scaffolds – testing and modelling
- 2017Numerical Modelling of Effects of Biphasic Layers of Corrosion Products to the Degradation of Magnesium Metal In Vitrocitations
- 2017Bandgap Control via Structural and Chemical Tuning of Transition Metal Perovskite Chalcogenidescitations
- 2017Compact Brillouin devices through hybrid integration on siliconcitations
- 2017A numerical approach to reconstruct mesoscopic yarn section of textile composites based upon X-ray micro-tomography
- 2016Effects of Annealing on GaAs/GaAsSbN/GaAs Core-Multi-shell Nanowires
- 2015Film thickness of vertical upward co-current adiabatic flow in pipescitations
- 2014Bifunctional organic/inorganic nanocomposites for energy harvesting, actuation and magnetic sensing applicationscitations
Places of action
Organizations | Location | People |
---|
article
Numerical Modelling of Effects of Biphasic Layers of Corrosion Products to the Degradation of Magnesium Metal In Vitro
Abstract
Magnesium (Mg) is becoming increasingly popular for orthopaedic implant materials. Its mechanical properties are closer to bone than other implant materials, allowing for more natural healing under stresses experienced during recovery. Being biodegradable, it also eliminates the requirement of further surgery to remove the hardware. However, Mg rapidly corrodes in clinically relevant aqueous environments, compromising its use. This problem can be addressed by alloying the Mg, but challenges remain at optimising the properties of the material for clinical use. In this paper, we present a mathematical model to provide a systematic means of quantitatively predicting Mg corrosion in aqueous environments, providing a means of informing standardisation of in vitro investigation of Mg alloy corrosion to determine implant design parameters. The model describes corrosion through reactions with water, to produce magnesium hydroxide Mg(OH) 2 , and subsequently with carbon dioxide to form magnesium carbonate MgCO 3 . The corrosion products produce distinct protective layers around the magnesium block that are modelled as porous media. The resulting model of advection–diffusion equations with multiple moving boundaries was solved numerically using asymptotic expansions to deal with singular cases. The model has few free parameters, and it is shown that these can be tuned to predict a full range of corrosion rates, reflecting differences between pure magnesium or magnesium alloys. Data from practicable in vitro experiments can be used to calibrate the model’s free parameters, from which model simulations using in vivo relevant geometries provide a cheap first step in optimising Mg-based implant materials.