Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kappl, Clemens

  • Google
  • 1
  • 4
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Improving the Tribological Properties of Technical Polymers with Metal Sulphide Compounds6citations

Places of action

Chart of shared publication
Hausberger, Andreas
1 / 9 shared
Stiller, Tanja
1 / 2 shared
Grün, Florian
1 / 41 shared
Hensgen, Lars
1 / 2 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Hausberger, Andreas
  • Stiller, Tanja
  • Grün, Florian
  • Hensgen, Lars
OrganizationsLocationPeople

article

Improving the Tribological Properties of Technical Polymers with Metal Sulphide Compounds

  • Hausberger, Andreas
  • Kappl, Clemens
  • Stiller, Tanja
  • Grün, Florian
  • Hensgen, Lars
Abstract

<p>Technical thermoplastic materials (e.g., PEEK, PPA and POM) are widely used for tribo-logical applications combined with different filler systems (e.g., glass-or carbon fibres) because of their excellent mechanical properties. The friction and wear behaviour of thermoplastics can be specifically improved by solid lubrication systems such as graphite, PTFE and MoS<sub>2</sub>. Besides these systems, others such as WoS<sub>2</sub> and MnS are becoming scientifically interesting. This work investigates the influence of different solid lubricants—alternative metal sulphides and polymer-based—in com-bination with different glass fibre contents on the tribological behaviour of unfilled PEEK and glass fibre-filled PPA. For this purpose, compounds were produced and injection-moulded into tribological test specimens that were subsequently tested. It is particularly evident for both matrix materials that the solid lubricant SLS 22 shows a 25% wear rate reduction when compared to MoS<sub>2</sub> and, in addition, the proportion of fibre content in PPA shows an additional wear rate reduction by a factor of 10. The friction level could be kept at a similar level compared to the usually utilised solid lubricants. The investigations showed the potential use of metal sulphide filler systems in high-performance thermoplastic with enhanced tribological properties as alternatives to the well-established solid lubricants.</p>

Topics
  • impedance spectroscopy
  • compound
  • Carbon
  • glass
  • glass
  • thermoplastic
  • static light scattering