People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gajević, Sandra
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Magnesium-Titanium Alloys: A Promising Solution for Biodegradable Biomedical Implantscitations
- 2024Investigation of the impact of abrasive action on surface roughness and worn mass of laminated composites
- 2024Tribological Behaviour of Hypereutectic Al-Si Composites: A Multi-Response Optimisation Approach with ANN and Taguchi Grey Methodcitations
- 2024Multi-Objective Optimization of Tribological Characteristics for Aluminum Composite Using Taguchi Grey and TOPSIS Approachescitations
- 2024Optimization of Dry Sliding Wear in Hot-Pressed Al/B4C Metal Matrix Composites Using Taguchi Method and ANNcitations
- 2024Progress in Aluminum-Based Composites Prepared by Stir Casting: Mechanical and Tribological Properties for Automotive, Aerospace, and Military Applicationscitations
- 2023Optimization of tribological behaviour of hybrid composites based on A356 and ZA-27 alloys
- 2023Wear of A356/Al2O3 nanocomposites and optimisation of material and operating parameters
- 2023Influence of materials on the efficiency of worm gear transmission
- 2023A review on mechanical and tribological properties of aluminium-based metal matrix nanocomposites
- 2023Comparative analysis of hybrid composites based on A356 and ZA-27 alloys regarding their tribological behaviourcitations
- 2023Hypereutectic aluminum alloys and composites: A reviewcitations
- 2023Tribological Application of Nanocomposite Additives in Industrial Oilscitations
- 2022Optimization of parameters that affect wear of A356/Al<sub>2</sub>O<sub>3</sub> nanocomposites using RSM, ANN, GA and PSO methodscitations
- 2021Multi response parameters optimization of ZA-27 nanocompositescitations
- 2021Optimization of hybrid ZA‐27 nanocomposites using ANOVA and ANN analysis
- 2014Application of Taguchi methods in testing tensile strength of polyethylene
Places of action
Organizations | Location | People |
---|
article
Tribological Application of Nanocomposite Additives in Industrial Oils
Abstract
<jats:p>The demand for an improvement in the tribological properties of lubricants used in various industrial plants, the automotive industry, and other power transmissions has resulted in the development of a whole family of improved lubricants based on nanotechnology. Especially important are nanotube additives, which significantly improve the tribological properties of lubricants, primarily by reducing the friction coefficient and wear of the coupled elements but also by reducing the temperature load and increasing the stability of the oil film between the lubricated surfaces. The properties of nanotube-based additives were further improved using elements such as metal oxides and compounds based on titanium, molybdenum, aluminum, etc. This paper presents the results obtained in the field of research and application of nanocomposite lubricant additives. It also gives a partial comparative analysis of the research conducted in this field. The primary goal of this paper is to analyze the research results in the field of the application of nanotubes in lubricants and to indicate the importance of their application, such as improving the tribological properties of machines and reducing power losses. Furthermore, this paper shows the negative impact of nanoparticles on the environment and human health and the costs of applying some types of nanoparticles.</jats:p>