People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Szwajka, Krzysztof
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2025Experimental Study on Mechanical Performance of Single-Side Bonded Carbon Fibre-Reinforced Plywood for Wood-Based Structures
- 2024Analysis of the Microstructure and Mechanical Performance of Resistance Spot-Welding of Ti6Al4V to DP600 Steel Using Copper/Gold Cold-Sprayed Interlayerscitations
- 2024Effect of Countersample Coatings on the Friction Behaviour of DC01 Steel Sheets in Bending-under-Tension Friction Testscitations
- 2024Application of categorical boosting to modelling the friction behaviour of DC05 steel sheets in strip drawing testcitations
- 2024Analysis of the friction performance of deep-drawing steel sheets using network modelscitations
- 2024The Effect of the Addition of Silicon Dioxide Particles on the Tribological Performance of Vegetable Oils in HCT600X+Z/145Cr46 Steel Contacts in the Deep-Drawing Process
- 2024Analysis of Influence of Coating Type on Friction Behaviour and Surface Topography of DC04/1.0338 Steel Sheet in Bending Under Tension Friction Test
- 2024Analysis of Coefficient of Friction of Deep-Drawing-Quality Steel Sheets Using Multi-Layer Neural Networkscitations
- 2023Pressure-Assisted Lubrication of DC01 Steel Sheets to Reduce Friction in Sheet-Metal-Forming Processescitations
- 2023Assessment of the Tribological Performance of Bio-Based Lubricants Using Analysis of Variancecitations
- 2023An Investigation into the Friction of Cold-Rolled Low-Carbon DC06 Steel Sheets in Sheet Metal Forming Using Radial Basis Function Neural Networkscitations
- 2022The Use of Non-Edible Green Oils to Lubricate DC04 Steel Sheets in Sheet Metal Forming Processcitations
- 2022Analysis of the Friction Mechanisms of DC04 Steel Sheets in the Flat Strip Drawing Testcitations
- 2022Frictional Characteristics of Deep-Drawing Quality Steel Sheets in the Flat Die Strip Drawing Testcitations
Places of action
Organizations | Location | People |
---|
article
Pressure-Assisted Lubrication of DC01 Steel Sheets to Reduce Friction in Sheet-Metal-Forming Processes
Abstract
<jats:p>Friction in sheet-metal-forming processes not only affects the values of the force parameters of the process but also determines the quality of the surface of the drawpieces. This paper presents an approach to reducing the coefficient of friction by directly applying pressurized oil to the contact zone. For this purpose, a special test stand was built to carry out the strip draw test, commonly used to model the phenomenon of friction in the deep-drawing process. This test consisted of pulling a strip between flat countersamples made of 145Cr6 cold-work tool steel covered with an abrasion-resistant Mtec (AlTiN) coating. During the pilot tests, various contact pressures, lubricants with different viscosities, and different lubricant pressures were used. The influence of friction conditions on the surface roughness of the samples and the relationship between the friction conditions and the value of the coefficient of friction were determined. The supply of the lubricant under pressure into the contact zone has a beneficial effect on reducing friction. The coefficient of friction decreases with increasing lubricant pressure for contact pressures of 2–6 MPa. For a contact pressure of 8 MPa, the lubricant pressure is the least favorable for reducing the coefficient of friction. At higher lubricant pressures (12 and 18 bar), the lubrication efficiency depends on the viscosity of the lubricant and decreases with increasing contact pressure.</jats:p>