Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gleirscher, Milena

  • Google
  • 1
  • 4
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Accelerated Thermo-Catalytic Degradation of Perfluoropolyether (PFPE) Lubricants for Space Applications9citations

Places of action

Chart of shared publication
Hausberger, Andreas
1 / 9 shared
Wolfberger, Archim
1 / 5 shared
Schlögl, Sandra
1 / 33 shared
Hołyńska, Małgorzata
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Hausberger, Andreas
  • Wolfberger, Archim
  • Schlögl, Sandra
  • Hołyńska, Małgorzata
OrganizationsLocationPeople

article

Accelerated Thermo-Catalytic Degradation of Perfluoropolyether (PFPE) Lubricants for Space Applications

  • Hausberger, Andreas
  • Wolfberger, Archim
  • Schlögl, Sandra
  • Gleirscher, Milena
  • Hołyńska, Małgorzata
Abstract

Perfluoropolyethers (PFPE) are a class of frequently used lubricants in space applications due to their high stability under demanding conditions. However, they are susceptible to aging, with the aging mechanism being dependent on the specific material combination and storage condition. A Lewis-acid-induced thermo-catalytic degradation mechanism is of concern, for example, under steel-on-steel sliding contact, and can be relevant for long-term storage (LTS). Accelerated aging experiments were performed on Fomblin® Z25 and Krytox™ 143AC to investigate thermal stability under the influence of iron(III) fluoride (FeF3) at elevated temperatures (180 °C, 200 °C, and 220 °C) up to a total duration of 2000 h. The degradation effects were monitored via selected analysis techniques: mass loss of the samples due to degradation and subsequent evaporation during aging, FTIR spectroscopy to investigate changes to the chemical structure, dynamic viscosity measurements for the investigation of a potential impact due to changes in molecular mass, and a ball-on-disc tribological test setup to obtain friction behavior of the aged lubricants. Distinct differences between the two types of PFPE lubricants regarding stability to thermo-catalytic degradation were found. Fomblin® Z25 was highly affected by the presence of FeF3 within the selected aging conditions, exhibiting high mass loss, a significant drop in dynamic viscosity, and an increased coefficient of friction due to degradation reactions.

Topics
  • impedance spectroscopy
  • experiment
  • steel
  • iron
  • aging
  • evaporation
  • aging
  • dynamic viscosity
  • coefficient of friction
  • molecular mass