People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Alsaleh, Naser
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Multi-Response Optimization of Electrochemical Machining Parameters for Inconel 718 via RSM and MOGA-ANNcitations
- 2024Indentation Behavior Assessment of As-Built, Solution, and Artificial Aged Heat-Treated Selective Laser Melting Specimens of AlSi10Mg
- 2023Additively Manufactured Parts from AA2011-T6 Large-Diameter Feedstocks Using Friction Stir Depositioncitations
- 2022Multipoint Forming Using Hole-Type Rubber Punchcitations
- 2022Wear Characteristics of Mg Alloy AZ91 Reinforced with Oriented Short Carbon Fiberscitations
- 2022A Comparative Machinability Study of SS 304 in Turning under Dry, New Micro-Jet, and Flood Cooling Lubrication Conditionscitations
- 2022A Novel Friction Stir Deposition Technique to Refill Keyhole of Friction Stir Spot Welded AA6082-T6 Dissimilar Joints of Different Sheet Thicknessescitations
- 2021Optimization of Abrasive Water Jet Machining of SiC Reinforced Aluminum Alloy Based Metal Matrix Composites Using Taguchi–DEAR Techniquecitations
- 2021Grain Structure, Crystallographic Texture, and Hardening Behavior of Dissimilar Friction Stir Welded AA5083-O and AA5754-H14citations
Places of action
Organizations | Location | People |
---|
article
A Comparative Machinability Study of SS 304 in Turning under Dry, New Micro-Jet, and Flood Cooling Lubrication Conditions
Abstract
<jats:p>The main objective of this experimental investigation is to examine favourable machining conditions by utilising fewer resources of machining industries for the techno-economical and ecological benefits. The machining operations are performed in turning SS 304 using coated carbide tool inserts under dry, water-soluble cutting fluid solution in the form of flood cooling and small-quantity lubrication (SQL) conditions by employing a newly formed micro-jet for a comparative classical chips study and analysis. The machining experiments are conducted in turning by a 25 kW precision CNC lathe with a special arrangement of micro-jets into the machining zone. Machining speeds and feed rates are varied under dry, micro-jet, and flood cooling conditions and their effects are studied on the type of chips and their morphology, chip reduction coefficient (ξ), and chip shear plane distance (d). The effect of machining environments on tool health conditions (such as BUEs, tool-edge chipping, and edge breaking) is examined for the inferences. In the range of low-speed machining (less than 600 m/min), metal cutting seems easier in flood cooling conditions, but it imposes more unfavourable effects (such as edge chipping and edge breaking) on the ceramic cutting tool’s health. On the other hand, the dry machining condition shows a favourable performance for a ceramic cutting tool. The optimum machining condition is found in the micro-jet SQL by the analysis of experimental data and observation results for the tool and work combination. The analysis of the results is carried out by the response surface methodology (RSM) and artificial neural network (ANN). The ANN model is found to be more accurate than RSM. The aspects of effective green machining are emphasised.</jats:p>