People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bailly, David
RWTH Aachen University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2024Extension of a Contact Subroutine for Composite Ring Rolling to Include Temperature Dependency
- 2023The adaption, evaluation and application of a semi-empirical bond strength model for the simulations of multi-pass hot roll bonding of aluminium alloys
- 2023Development of a collaborative online knowledge management system for incremental sheet formingcitations
Places of action
Organizations | Location | People |
---|
article
Extension of a Contact Subroutine for Composite Ring Rolling to Include Temperature Dependency
Abstract
<jats:p>By combining the ring rolling and roll bonding processes, the product spectrum can be additionally expanded. Since a successful composite ring rolling process requires a higher growth tendency for the inner ring, previous publications commonly included a softer inner ring to reduce the flow resistance of the inner ring or specific geometries for rings and tools. In this work, the material combination of a 100Cr6 (DIN 1.3505, AISI 52100) outer ring and a 42CrMo4 (DIN 1.7225, AISI 4140) inner ring is used to show that the composite ring rolling process is also possible for material combinations with a balanced flow stress ratio and equal wall thicknesses. In earlier publications, the influence of temperature was neglected. As the influence on the yield stress and thus on the success of the process has a significant influence, this should be considered in order to be able to make a reliable statement. For this purpose, the bond formation of the two materials was investigated by bonding experiments, and an existing bond formation model was extended with respect to the temperature dependency. On the basis of this model, the process control parameters were investigated using FE simulations, and a ring rolling experiment was carried out.</jats:p>