Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rathfelder, Stefan

  • Google
  • 1
  • 4
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Production of Permanent Magnets from Recycled NdFeB Powder with Powder Extrusion Moulding2citations

Places of action

Chart of shared publication
Burkhardt, Carlo
1 / 12 shared
Holzer, Clemens
1 / 65 shared
Schuschnigg, Stephan
1 / 34 shared
Kukla, Christian
1 / 52 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Burkhardt, Carlo
  • Holzer, Clemens
  • Schuschnigg, Stephan
  • Kukla, Christian
OrganizationsLocationPeople

article

Production of Permanent Magnets from Recycled NdFeB Powder with Powder Extrusion Moulding

  • Rathfelder, Stefan
  • Burkhardt, Carlo
  • Holzer, Clemens
  • Schuschnigg, Stephan
  • Kukla, Christian
Abstract

In the last fifteen years, several groups have investigated metal injection moulding (MIM) of NdFeB powder to produce isotropic or anisotropic rare earth magnets of greater geometric complexity than that achieved by the conventional pressing and sintering approach. However, due to the powder’s high affinity for oxygen and carbon uptake, sufficient remanence and coercivity remains difficult. This article presents a novel approach to producing NdFeB magnets from recycled material using Powder Extrusion Moulding (PEM) in a continuous process. The process route uses powder obtained from recycling rare earth magnets through Hydrogen Processing of Magnetic Scrap (HPMS). This article presents the results of tailored powder processing, the production of mouldable feedstock based on a special binder system, and moulding with PEM to produce green and sintered parts. The magnetic properties and microstructures of debinded and sintered samples are presented and discussed, focusing on the influence of filling ratio and challenging processing conditions on interstitial content as well as density and magnetic properties.

Topics
  • density
  • microstructure
  • Carbon
  • Oxygen
  • extrusion
  • anisotropic
  • Hydrogen
  • isotropic
  • interstitial
  • sintering
  • coercivity