People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Calaon, Matteo
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (41/41 displayed)
- 2024Performance evaluation of polymer-filled metal fused filament fabrication tooling for profile extrusioncitations
- 2024Integration of soft tooling by additive manufacturing in polymer profile extrusion process chain
- 2023Impact of Injection Molding Parameters on Material Acoustic Parameters
- 2023Experimental testing and characterization of additively manufactured CF-PEEK dies for complex profile in polymer profile extrusion
- 2023Flow simulation and experimental validation of polymer extrusion using additively manufactured carbon fiber reinforced PEEK dies
- 2023Additive manufacturing in polymer extrusion tooling: experimental testing and surface characterization
- 2023Influence of surface roughness parameters of additively manufactured die on the extrudates in polymer extrusion
- 2022Micro-injection moulding simulation and manufacturing of polymer chips for acoustic separation
- 2022Effective polishing of inner surfaces of additive manufactured inserts for polymer extrusion using Plasma Electrolytic Polishing
- 2021Additive manufacturing of soft tools – Application of carbon fiber filled PEEK to polymer extrusion dies production
- 2021Enabling micro injection moulding using a soft tooling process chain with inserts made of mortar materialcitations
- 2020Dimensional Evaluation of Additive Manufactured Polymer Extrusion Dies Produced by Continuous Liquid Interface Production
- 2020Towards the integration of additively manufactured photopolymer dies in the polymer profile extrusion process chaincitations
- 2020On the implementation of metal additive manufacturing in the tooling process chain for polymer profile extrusioncitations
- 2019Quantitative depth evaluation of microgrooves on polymer material beyond the diffraction limitcitations
- 2019Modelling the filling behavior of micro structured plastic optical components
- 2019Value chain and production cost optimization by integrating additive manufacturing in injection molding process chaincitations
- 2018A Soft Tooling Process Chain for Injection Molding of a 3D Component with Micro Pillarscitations
- 2018Manufacturing Signatures of Injection Molding and Injection Compression Molding for Micro-Structured Polymer Fresnel Lens Productioncitations
- 2018Pitch measurements validation of a structural coloured steel insert using Scanning Confocal Microscopy (SCM) and Atomic Force Microscopy (AFM)
- 2018Evaluation of injection pressure as a process fingerprint for Injection and Injection Compression Molding of micro structured optical components
- 2018Zero Defects manufacturing in Injection Compression Molding of Polymer Fresnel Lenses
- 2017Investigation on the micro injection molding process of an overmolded multi-material micro component
- 2017Replication of micro and nano-features on iPP by injection molding with fast cavity surface temperature evolutioncitations
- 2017Effects of fast mold temperature evolution on micro features replication quality during injection moldingcitations
- 2016Fast Mold Temperature Evolution on Micro Features Replication Quality during Injection Molding
- 2015Effect of Functional Nano Channel Structures Different Widths on Injection Molding and Compression Molding Replication Capabilities
- 2015Investigation of air entrapment and weld line defects in micro injection moulded thermoplastic elastomer micro rings
- 2015Replication fidelity assessment of polymer large area sub-μm structured surfaces using fast angular intensity distribution measurements.
- 2015Microfluidic chip designs process optimization and dimensional quality controlcitations
- 2014Improvement of replication fidelity in injection moulding of nano structures using an induction heating system
- 2014Challenges in high accuracy surface replication for micro optics and micro fluidics manufacture
- 2014Process chain validation in micro and nano replication
- 2013Influence of process parameters on edge replication quality of lab-on-a-chip micro fluidic systems geometries
- 2012Production Quality Control Of Microfluidic Chip Designs
- 2012Packing parameters effect on injection molding of polypropylene nanostructured surfaces
- 2012Benchmarking of direct and indirect friction tests in micro formingcitations
- 2012PolyNano M6.2.1 First generation process finger print – design, test and validation
- 2012PolyNano M.6.1.1 Process validation state-of-the-art
- 2011Establishment of sub-µm structured polymer surfaces texture using a non-comnventional approach
- 2011Surface Nano Structures Manufacture Using Batch Chemical Processing Methods for Tooling Applications
Places of action
Organizations | Location | People |
---|
article
Impact of Injection Molding Parameters on Material Acoustic Parameters
Abstract
Understanding the relationship between injection molding parameters and the acoustic properties of polymers is crucial for optimizing the design and performance of acoustic-based polymer devices. In this work, the impact of injection molding parameters, such as the injection velocity and packing pressure, on the acoustic parameters of polymers, namely the elastic moduli, is studied. The measurements lead to calculating material parameters, such as the Young’s modulus and Poisson’s ratio, that can be swiftly measured and determined thanks to this method. Polymethyl methacrylate (PMMA) was used as the molding material, and using PMMA LG IG 840, the parts were simulated and injection molded, applying a ‘design of experiment’ (DOE) statistical method. The results indicated a correlation between the injection molding process parameters and the acoustic characteristics, such as the elastic moduli, and a specifically decreasing trend with increase in the injection velocity. Notably, a relative decrease in the Young’s modulus by (Formula presented.) was observed when increasing the packing pressure from (Formula presented.) to (Formula presented.). Similarly, a decrease in the Poisson’s ratio of (Formula presented.) was observed when the injection velocity was increased from (Formula presented.) to (Formula presented.). This method can be used to fine-tune the material properties according to the needs of a given application and to facilitate the characterization of different polymer acoustic properties essential for acoustic-based polymer devices.