People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hassanin, Hany
Canterbury Christ Church University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2023Hot Air Contactless Single Point Incremental Formingcitations
- 2022Multipoint Forming Using Hole-Type Rubber Punchcitations
- 2021Laser powder bed fusion of Ti-6Al-2Sn-4Zr-6Mo alloy and properties prediction using deep learning approachescitations
- 2020Controlling the properties of additively manufactured cellular structures using machine learning approachescitations
- 20204D printing of origami structures for minimally invasive surgeries using functional scaffoldcitations
- 2018Additive Manufactured Sandwich Composite/ABS Parts for Unmanned Aerial Vehicle Applicationscitations
- 2018Surface finish improvement of additive manufactured metal partscitations
- 2018Microfabrication of Net Shape Zirconia/Alumina Nano-Composite Micro Partscitations
- 2018Tailoring selective laser melting process for titanium drug-delivering implants with releasing micro-channelscitations
- 2018Porosity control in 316L stainless steel using cold and hot isostatic pressingcitations
- 2017Net-Shape Manufacturing using Hybrid Selective Laser Melting/Hot Isostatic Pressingcitations
- 2017Evolution of grain boundary network topology in 316L austenitic stainless steel during powder hot isostatic pressingcitations
- 2017Development and Testing of an Additively Manufactured Monolithic Catalyst Bed for HTP Thruster Applicationscitations
- 2016Effect of casting practice on the reliability of Al cast alloyscitations
- 2016Adding functionality with additive manufacturing : fabrication of titanium-based antibiotic eluting implantscitations
- 2016Selective Laser Melting of TiNi Auxetic Structures
- 2016The development of TiNi-based negative Poisson's ratio structure using selective laser meltingcitations
- 2015Influence of processing conditions on strut structure and compressive properties of cellular lattice structures fabricated by selective laser meltingcitations
- 2015In-situ shelling via selective laser melting: modelling and microstructural characterisationcitations
Places of action
Organizations | Location | People |
---|
article
Hot Air Contactless Single Point Incremental Forming
Abstract
Single Point Incremental Forming (SPIF) has emerged as a time-efficient approach that offers increased material formability compared to conventional sheet metal forming techniques. However, the physical interaction between the forming tool and the sheet poses challenges, such as tool wear and formability limits. This study introduces a novel sheet-forming technique called Contactless Single Point Incremental Forming (CSPIF) that uses hot compressed air as a deformation tool, eliminating the requirement for physical interaction between the sheet and a rigid forming tool. In this study, a polycarbonate sheet was chosen as the case study material and subjected to the developed CSPIF. The experiments were carried out at an air temperature of 160°C, air pressure of 1 bar, a nozzle speed of 750 mm/min, and a step-down thickness of 0.75 mm. A Schlieren setup and a thermal camera were used in order to visualize the motion of the compressed hot air as it travelled from the nozzle to the sheet. The results showed that the CSPIF technique allowed for the precise shaping of the polycarbonate sheet with minimal springback. However, minor deviations from the designed profile were observed, primarily at the starting point of the nozzle, which can be attributed to the bending effects of the sample. In addition, the occurrence of sheet thinning and material buildup on the deformed workpiece was also observed. The average surface roughness (Ra) of the deformed workpiece was measured to be 0.2871 microns.