Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bartolomeis, Andrea De

  • Google
  • 2
  • 4
  • 195

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Future research directions in the machining of Inconel 718183citations
  • 2020Electrohydrodynamic Atomization for Minimum Quantity Lubrication (EHDA-MQL) in End Milling Ti6Al4V Titanium Alloy12citations

Places of action

Chart of shared publication
Jawahir, I. S.
1 / 12 shared
Biermann, Dirk
1 / 52 shared
Newman, Stephen T.
1 / 28 shared
Shokrani, Alborz
2 / 38 shared
Chart of publication period
2021
2020

Co-Authors (by relevance)

  • Jawahir, I. S.
  • Biermann, Dirk
  • Newman, Stephen T.
  • Shokrani, Alborz
OrganizationsLocationPeople

article

Electrohydrodynamic Atomization for Minimum Quantity Lubrication (EHDA-MQL) in End Milling Ti6Al4V Titanium Alloy

  • Shokrani, Alborz
  • Bartolomeis, Andrea De
Abstract

Titanium alloy Ti6Al4V is a difficult-to-machine material which is extensively used in the aerospace and medical industries. Machining titanium is associated with a short tool life and low productivity. In this paper, a new cooling-lubrication system based on electrohydrodynamic atomization was designed, manufactured and tested and the relevant theory was developed. The major novelty of the system lies within the use of electrohydrodynamic atomization (EHDA) and a three-electrode setup for generating lubricant droplets. The system was tested and compared with that of flood, minimum quantity lubrication (MQL) and compressed air machining. The proposed system can extend the tool life by 6 and 22 times when compared with MQL and flood cooling, respectively. This is equivalent to more than 170 min tool life at 120 m/min cutting speed allowing for significant productivity gains in machining Ti6Al4V.

Topics
  • impedance spectroscopy
  • theory
  • grinding
  • milling
  • titanium
  • titanium alloy
  • atomization