People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Winter, Sven
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2023Numerical and experimental study of high-speed blanking of DC06 steelcitations
- 2023Influence of surface pressure and tool materials on contact heating of aluminum
- 2022Punching of Ultra-High-Strength Spring Strips: Evolution of Cutting Edge Radius up to 1,000,000 Strokes for Three Punch Materialscitations
- 2022Punching of Ultra-High-Strength Spring Strips: Evolution of Cutting Edge Radius up to 1,000,000 Strokes for Three Punch Materialscitations
- 2022Local Temperature Development in the Fracture Zone during Uniaxial Tensile Testing at High Strain Rate: Experimental and Numerical Investigationscitations
- 2021Effect of sample geometry on the macroscopic shear deformation of the titanium alloy Ti-10V-2Fe-3Al subjected to quasi-static and dynamic compression-shear loadingcitations
- 2021Adiabatic Blanking: Influence of Clearance, Impact Energy, and Velocity on the Blanked Surfacecitations
- 2021Processing Q&P steels by hot-metal gas forming: Influence of local cooling rates on the properties and microstructure of a 3rd generation AHSScitations
- 2021Analyzing the influence of a deep cryogenic treatment on the mechanical properties of blanking tools by using the short-time method PhyBaLCHTcitations
- 2021Experimental and Numerical Investigations into Magnetic Pulse Welding of Aluminum Alloy 6016 to Hardened Steel 22MnB5citations
- 2021Erprobung anwendungsadaptierter CVD-Diamantschichten beim Stanzencitations
- 2020Adiabatic blanking of advanced high-strength steelscitations
- 2020On the evolution of adiabatic shear bands in the beta titanium alloy Ti-10V-2Fe-3Al
- 2020Determination of Material and Failure Characteristics for High-Speed Forming via High-Speed Testing and Inverse Numerical Simulationcitations
- 2020Equal-channel angular pressing influencing the mean stress sensitivity in the high cycle fatigue regime of the 6082 aluminum alloycitations
- 2020Process Development for a Superplastic Hot Tube Gas Forming Process of Titanium (Ti-3Al-2.5V) Hollow Profilescitations
- 2020Process Development for a Superplastic Hot Tube Gas Forming Process of Titanium (Ti-3Al-2.5V) Hollow Profilescitations
- 2019Finite element simulations on the relation of microstructural characteristics and the formation of different types of adiabatic shear bands in a v-titanium alloy ; Finite-Elemente-Simulationen über die Zusammenhänge von mikrostrukturellen Eigenschaften und die Ausbildung verschiedener Arten von adiabatischen Scherbänden in einer v-Titanlegierungcitations
- 2017High temperature and dynamic testing of AHSS for an analytical description of the adiabatic cutting processcitations
Places of action
Organizations | Location | People |
---|
document
Determination of Material and Failure Characteristics for High-Speed Forming via High-Speed Testing and Inverse Numerical Simulation
Abstract
In conventional forming processes, quasi-static conditions are a good approximation and numerical process optimization is the state of the art in industrial practice. Nevertheless, there is still a substantial need for research in the field of identification of material parameters. In production technologies with high forming velocities, it is no longer acceptable to neglect the dependency of the hardening on the forming speed. Therefore, a method for determining material characteristics in processes with high forming speeds was developed by designing and implementing a test setup and an inverse parameter identification. Two acceleration concepts were realized: a pneumatically driven one and an electromagnetically driven one. The method was verified for a mild steel and an aluminum alloy proving that the identified material parameters allow numerical modeling of high-speed processes with good accuracy. The determined material parameters for steel show significant differences for different stress states. For specimen geometries with predominantly uniaxial tensile strain at forming speeds in the order of 10(4)-10(5)/s the determined yield stress was nearly twice as high compared to shear samples; an effect which does not occur under quasi-static loading. This trend suggests a triaxiality-dependent rate dependence, which might be attributed to shear band induced strain localization and adiabatic heating.