People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tutunjian, Shahan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2020A numerical analysis of an energy directing method through friction heating during the ultrasonic welding of thermoplastic compositescitations
- 2020A numerical analysis of the temporal and spatial temperature development during the ultrasonic spot welding of fibre-reinforced thermoplasticscitations
- 2019A control method for the ultrasonic spot welding of fiber-reinforced thermoplastic laminates through the weld-power time derivativecitations
Places of action
Organizations | Location | People |
---|
article
A numerical analysis of the temporal and spatial temperature development during the ultrasonic spot welding of fibre-reinforced thermoplastics
Abstract
The ultrasonic spot welding of fibre-reinforced thermoplastic laminates has received great interest from researchers, mainly in the fields of aerospace and automotive industries. It offers an efficient solution to join large thermoplastic composite parts through the spot welding approach with a high level of automation. In this paper, the temporal and spatial development of the temperature in an ultrasonic weld spot between two fibre-reinforced thermoplastic laminates was modelled. During the ultrasonic welding of thermoplastic composite laminates without energy directors a sudden temperature jump in the weld spot is usually observed. The temperature increase occurs rapidly up to the decomposition of the thermoplastic matrix and causes the degradation of the weld spot. To understand the temperature distribution within the weld spot and to calculate its temporal development, the thermal problem was analysed using a two-dimensional explicit finite difference method. To evaluate the models, the calculated time traces of the temperature in the weld spot were compared with the experimentally obtained values under comparable conditions.