Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Szklarska, Magdalena

  • Google
  • 7
  • 31
  • 64

University of Silesia

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2024Electrophoretic Deposition of Chitosan Coatings on the Porous Titanium Substrate2citations
  • 2022Influence of molybdenum on the microstructure, mechanical properties and corrosion resistance of Ti20Ta20Nb20(ZrHf)20-xMox (Where: x = 0, 5, 10, 15, 20) high entropy alloys17citations
  • 2021Characterization of YSZ Coatings Deposited on cp-Ti Using the PS-PVD Method for Medical Applications6citations
  • 2020Electrophoretic deposition of chitosan coatings on the Ti15Mo biomedical alloy from a citric acid solution16citations
  • 2019Characterization of long-term corros ion performance of ti15mo alloyin saline solution5citations
  • 2019Characterization of Long-Term Corrosion Performance of TI15MO Alloy in Saline Solution5citations
  • 2014Alginate biopolymer coatings obtained by electrophoretic deposition on Ti15Mo alloy13citations

Places of action

Chart of shared publication
Gawlikowski, Maciej
1 / 4 shared
Barylski, Adrian
1 / 28 shared
Flesińska, Julia
1 / 2 shared
Kurtyka, Przemysław
1 / 3 shared
Dercz, Grzegorz
5 / 39 shared
Golba, Sylwia
1 / 7 shared
Matuła, Izabela
2 / 13 shared
Ilnicka, Barbara
1 / 1 shared
Zając, Julia Natalia
1 / 2 shared
Chrobak, Dariusz
1 / 7 shared
Świec, Maciej
1 / 1 shared
Lábár, János L.
1 / 10 shared
Stróż, Danuta
2 / 13 shared
Prusik, Krystian
1 / 12 shared
Glowka, Karsten
1 / 2 shared
Zubko, Maciej
2 / 32 shared
Barczyk, Jagoda
1 / 1 shared
Pudełek, Maciej
1 / 1 shared
Ryszawy, Damian
1 / 1 shared
Maszybrocka, Joanna
2 / 11 shared
Bochenek, Dariusz
1 / 49 shared
Stach, Sebastian
2 / 7 shared
Kubaszek, Tadeusz
1 / 3 shared
Góral, Marek
1 / 2 shared
Łosiewicz, Bożena
3 / 20 shared
Rams-Baron, Marzena
1 / 3 shared
Albrecht, Robert
1 / 2 shared
Simka, W.
1 / 4 shared
Starczewska, Oliwia
1 / 5 shared
Dudek, Karolina
1 / 12 shared
Łężniak, Marta
1 / 1 shared
Chart of publication period
2024
2022
2021
2020
2019
2014

Co-Authors (by relevance)

  • Gawlikowski, Maciej
  • Barylski, Adrian
  • Flesińska, Julia
  • Kurtyka, Przemysław
  • Dercz, Grzegorz
  • Golba, Sylwia
  • Matuła, Izabela
  • Ilnicka, Barbara
  • Zając, Julia Natalia
  • Chrobak, Dariusz
  • Świec, Maciej
  • Lábár, János L.
  • Stróż, Danuta
  • Prusik, Krystian
  • Glowka, Karsten
  • Zubko, Maciej
  • Barczyk, Jagoda
  • Pudełek, Maciej
  • Ryszawy, Damian
  • Maszybrocka, Joanna
  • Bochenek, Dariusz
  • Stach, Sebastian
  • Kubaszek, Tadeusz
  • Góral, Marek
  • Łosiewicz, Bożena
  • Rams-Baron, Marzena
  • Albrecht, Robert
  • Simka, W.
  • Starczewska, Oliwia
  • Dudek, Karolina
  • Łężniak, Marta
OrganizationsLocationPeople

article

Electrophoretic Deposition of Chitosan Coatings on the Porous Titanium Substrate

  • Gawlikowski, Maciej
  • Barylski, Adrian
  • Flesińska, Julia
  • Kurtyka, Przemysław
  • Dercz, Grzegorz
  • Szklarska, Magdalena
  • Golba, Sylwia
  • Matuła, Izabela
  • Ilnicka, Barbara
  • Zając, Julia Natalia
Abstract

<jats:p>Medicine is looking for solutions to help implant patients recover more smoothly. The porous implants promote osteointegration, thereby providing better stabilization. Introducing porosity into metallic implants enhances their biocompatibility and facilitates osteointegration. The introduction of porosity is also associated with a reduction in Young’s modulus, which reduces the risk of tissue outgrowth around the implant. However, the risk of chronic inflammation remains a concern, necessitating the development of coatings to mitigate adverse reactions. An interesting biomaterial for such modifications is chitosan, which has antimicrobial, antifungal, and osteointegration properties. In the present work, a porous titanium biomaterial was obtained by powder metallurgy, and electrophoretic deposition of chitosan coatings was used to modify its surface. This study investigated the influence of ethanol content in the deposition solution on the quality of chitosan coatings. The EPD process facilitates the control of coating thickness and morphology, with higher voltages resulting in thicker coatings and increased pore formation. Ethanol concentration in the solution affects coating quality, with higher concentrations leading to cracking and peeling. Optimal coating conditions (30 min/10 V) yield high-quality coatings, demonstrating excellent cell viability and negligible cytotoxicity. The GIXD and ATR-FTIR analysis confirmed the presence of deposited chitosan coatings on Ti substrates. The microstructure of the chitosan coatings was examined by scanning electron microscopy. Biological tests showed no cytotoxicity of the obtained materials, which allows for further research and the possibility of their use in medicine. In conclusion, EPD offers a viable method for producing chitosan-based coatings with controlled properties for biomedical applications, ensuring enhanced patient outcomes and implant performance.</jats:p>

Topics
  • Deposition
  • porous
  • impedance spectroscopy
  • pore
  • surface
  • scanning electron microscopy
  • titanium
  • porosity
  • biocompatibility